DOI QR코드

DOI QR Code

ZnO Nano-Powder Synthesized through a Simple Oxidation of Metallic Zn Powder in Alumina Crucible under an Air Atmosphere

대기 분위기의 알루미나 도가니 내에서 Zn 분말의 산화에 의해 합성된 ZnO 나노분말

  • Lee, Geun-Hyoung (Department of Materials & Components Engineering, Dong-eui University)
  • 이근형 (동의대학교 융합부품공학과)
  • Received : 2010.07.07
  • Published : 2010.09.22

Abstract

Tetrapod-shaped ZnO crystals were synthesized through a simple oxidation of metallic Zn powder in air without the presence of any catalysts or substrates. X-ray diffraction data revealed that the ZnO crystals had wurtzite structure. It is supposed that the growth of the tetrapod proceeded in a vapor-solid growth mechanism. As the amount of the source powder increased, the size of the tetrapod decreased. The tip morphology of the tetrapod changed from a needle-like shape to a spherical shape with the oxidation time. ZnO crystals with rod shape were fabricated via the oxidation of Zn and Sn mixture. Sn played an important role in the formation of ZnO crystals with different morphology by affecting the growth mode of ZnO crystals. The cathodoluminescent properties were measured for the samples. The strongest green emission was observed for the rod-shaped ZnO crystals, suggesting that the crystals had the high density of oxygen vacancies.

Keywords

References

  1. K. B. Lee, S. Cho, and H. Kwon, Met. Mater. Int. 15, 649 (2009). https://doi.org/10.1007/s12540-009-0649-8
  2. S. W. Kim, S. Fujita, H. K. Park, B. Yang, H. K. Kim, and D. H. Yoon, J. Cryst. Growth 292, 306 (2006) . https://doi.org/10.1016/j.jcrysgro.2006.04.026
  3. W. I. Park, Met. Mater. Int. 14, 659 (2008). https://doi.org/10.3365/met.mat.2008.12.659
  4. B. Q. Cao, M. Lorenz, A. Rahm, H. Wenckstem, C. Czekalla, J. Lenzner, G. Benndorf, and M. Grundmann, Nanotechnology 18, 455707 (2007). https://doi.org/10.1088/0957-4484/18/45/455707
  5. F. Wang, Z. Ye, D. Ma, L. Zhu, and F. Zhuge, J. Cryst. Growth 274, 447 (2005). https://doi.org/10.1016/j.jcrysgro.2004.10.035
  6. K. Zheng, C. X. Xu, G. P. Zhu, X. Li, J. P. Liu, Y. Yang, and X. W. Sun, Physica E 40, 2677 (2008). https://doi.org/10.1016/j.physe.2007.12.026
  7. B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett. 81, 757 (2002). https://doi.org/10.1063/1.1495878
  8. J. Ling, C. Chun, J. Zhang, Y. Huang, F. J. Shi, X. X. DIng, C. Tang, and S. R. Qi, J. Solid State Chem. 178, 819 (2005). https://doi.org/10.1016/j.jssc.2005.01.006
  9. Y. Dai, Y. Zhang, and Z. L. Wang, Solid State Commun. 126, 619 (2003).
  10. W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, J. Cryst. Growth 203, 186 (1999). https://doi.org/10.1016/S0022-0248(99)00076-7
  11. M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, and K. Hiruma, Appl. Phys. Lett. 61, 2051 (1992). https://doi.org/10.1063/1.108329
  12. N. Ozaki, Y. Ohno, and S. Takada, Appl. Phys. Lett. 73, 3700 (1998). https://doi.org/10.1063/1.122868
  13. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. allant, J. A. Voigt, and B. E. Grande, J. Appl. Phys. 79, 7983 (1996). https://doi.org/10.1063/1.362349