• Title/Summary/Keyword: Zinc-Aluminum

검색결과 234건 처리시간 0.031초

AZO 투명 전극 기반 반투명 실리콘 박막 태양전지 (AZO Transparent Electrodes for Semi-Transparent Silicon Thin Film Solar Cells)

  • 남지윤;조성진
    • 한국전기전자재료학회논문지
    • /
    • 제30권6호
    • /
    • pp.401-405
    • /
    • 2017
  • Because silicon thin film solar cells have a high absorption coefficient in visible light, they can absorb 90% of the solar spectrum in a $1-{\mu}m$-thick layer. Silicon thin film solar cells also have high transparency and are lightweight. Therefore, they can be used for building integrated photovoltaic (BIPV) systems. However, the contact electrode needs to be replaced for fabricating silicon thin film solar cells in BIPV systems, because most of the silicon thin film solar cells use metal electrodes that have a high reflectivity and low transmittance. In this study, we replace the conventional aluminum top electrode with a transparent aluminum-doped zinc oxide (AZO) electrode, the band level of which matches well with that of the intrinsic layer of the silicon thin film solar cell and has high transmittance. We show that the AZO effectively replaces the top metal electrode and the bottom fluorine-doped tin oxide (FTO) substrate without a noticeable degradation of the photovoltaic characteristics.

용사 도막의 내식성에 관한 전기화학적 평가 (An Electrochemical Evaluation on the Corrosion Property of Metallizing Film)

  • 신중하;문경만
    • Corrosion Science and Technology
    • /
    • 제9권6호
    • /
    • pp.325-330
    • /
    • 2010
  • Many surface protection methods have been developed to apply for constructional steels used under severe corrosive environment. Thermal spray coating has been known to be an attractive technique due to its relatively high coating speed. Furthermore high corrosion resistance of coated film with thermal spray is required to expand its application. Four types of coated films(DFT:300 um) such as pure zinc, pure aluminum and two Al-Zn alloy (Al:Zn=85:15 and Al:Zn=95:5) onto the carbon steel (SS401) were prepared with arc spray, and the corrosion behavior of their samples were evaluated by electrochemical method in this study. Pure aluminum sample showed high corrosion resistance behavior exposed to sea water solution and pure zinc and alloy (Al:Zn=95:5) samples followed pure aluminum sample. The other alloy(Al:Zn=85:15) so called galvalume coated onto the carbon steel ranks the 4th corrosion resistance in this study. The results of porosity ratio of those samples by observation are well matched with the electrochemical data.

Effect of Resistance Spot Welding Parameters on AA1100 Aluminum Alloy and SGACD Zinc coated Lap Joint Properties

  • Chantasri, Sakchai;Poonnayom, Pramote;Kaewwichit, Jesada;Roybang, Waraporn;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • 제3권1호
    • /
    • pp.153-160
    • /
    • 2015
  • This article is aimed to study the effects of resistance spot welding (RSW) on the lap joint properties between AA1100 aluminum alloy and SGACD zinc coated steel and its properties. The summarized experimental results are as follows. The summarized experimental results are as follows. The optimum welding parameters that produced maximum tensile shear strength of 2200 N was a welding current of 95 kA, a holding time of 10 cycles, and a welding pressure of 0.10 MPa. Increasing of welding current, increased the tensile shear strength of the joint and also increased the amount of aluminum dispersion at the joint interface. The lap joint of steel over the aluminum (Type I) showed the higher joint tensile shear strength than a lap joint of aluminum over the steel (Type II). The indentation depth and the ratio of the indentation depth to the plate thickness decreased when the welding current was increased in the type I lap joint and also decreased when the welding current was decreased in the type II lap joint. The interface structure showed the formation of the brittle $FeAl_3$ intermetallic compound that deteriorated the joint strength.

Zinc Tin Oxide 투명 박막트랜지스터의 특성에 미치는 소스/드레인 전극의 영향 (Influence of Source/Drain Electrodes on the Properties of Zinc Tin Oxide Transparent Thin Film Transistors)

  • 마대영;최무희
    • 한국전기전자재료학회논문지
    • /
    • 제28권7호
    • /
    • pp.433-438
    • /
    • 2015
  • Zinc tin oxide transparent thin film transistors (ZTO TTFTs) were fabricated by using $n^+$ Si wafers as gate electrodes. Indium (In), aluminum (Al), indium tin oxide (ITO), silver (Ag), and gold (Au) were employed for source and drain electrodes, and the mobility and the threshold voltage of ZTO TTFTs were observed as a function of electrode. The ZTO TTFTs adopting In as electrodes showed the highest mobility and the lowest threshold voltage. It was shown that Ag and Au are not suitable for the electrodes of ZTO TTFTs. As the results of this study, it is considered that the interface properties of electrode/ZTO are more influential in the properties of ZTO TTFTs than the conductivity of electrode.

55% A1 - 43.4% Zn - 1.6% Si 합금도금 강판의 특성에 관한 연구 (A Study on the Characteristics of Galvalume Sheet (55%A1-43.4%Zn-1.6%Si))

  • 김순경
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.310-315
    • /
    • 1997
  • An extensive corrosion study was initiated by galvalume steel sheet manufacturing company to clarify the corrosion behavior of zinc and zinc and zinc-alloy coated automotive sheet steel in out panel and electrical application. Since the early 1980's the use of zinc and aluminum alloy coated steel for vehicular corrosion protection has increased drastically. This paper describes the evaluation of formability, weldability and painted corrosion performance of galvalume steel sheet. This paper presents an overview of the program and some initial test results on the weldability, lifetime of the electrode tip shape of the spot welding and corrosion protection. Galvalume steel sheet improved corrosion performance and spot weldability of galvalume steel has no problem for the variation of welding current. And tip lifetime was changed according to the influence of shape.

  • PDF

A Study on Surface Growth Direction and Particle Shape According to the Amount of Oxygen and Deposition Parameters

  • Jeong, Jin;Kim, Seung Hee
    • 통합자연과학논문집
    • /
    • 제11권4호
    • /
    • pp.209-211
    • /
    • 2018
  • A zinc oxide thin film doped with aluminum was deposited by RF sputtering. The deposition temperature of the sputter chamber was kept constant at $350^{\circ}C$, the power supplied to the chamber was 75 W, the oxygen flow rate was changed to 10 sccm and 20 sccm, and the thin film deposition time was changed to 120 and 180 minutes. The structures of the deposited zinc oxide thin films were analyzed by van der Waals method using an X-ray diffractometer. As a result of X-ray diffraction, the amount of oxygen supplied to the zinc oxide thin film increased, and the surface growth of the (002), (400), (110), and (103) planes showed a change with increasing deposition time. Moreover, as the amount of oxygen supplied to the zinc oxide thin film increased, their shape was observed to be coarse, and the thin film' s particles shape was correlated with the oxygen chemical defect introduced.

다양한 금속 부품의 내식성 향상을 위한 Zn-Al 열 확산 코팅 기술 개발 (Development of Zn-Al thermal diffusion coating technology for improving anti-corrosion of various metal products)

  • 이주영;이주형;황준;이용규
    • Corrosion Science and Technology
    • /
    • 제13권5호
    • /
    • pp.195-203
    • /
    • 2014
  • Modern industry has a wide variety of application areas such as ocean industry, construction and automobile industry. With the current circumstances, the need for anti-corrosion technology that can be used on materials to withstand in harsh environments, is increasing. In this study, we have sought to develop a metal coating technology with zinc and aluminum powders as a potential anti-corrosion material. To make a coating on metal products, a thermal diffusion coating method was used under the conditions of $350^{\circ}C$ for 30 minutes. Optical microscope, Field emission scanning electron microscope (FE-SEM&EDX) and X-ray diffraction analysis were used to analyze a coating layer. As a result, we have confirmed that the generated amount of rust on metal parts coated with thermal diffusion coating method decreased dramatically compared with non-coated metal parts. Furthermore, the anti-corrosion performance was evaluated according to the different ratio of zinc and aluminum. Finally, we confirmed the possibility of application and commercialization of our coating technique on metal parts used in harsh industrial based on the results of these performance.

태양전지 응용을 위한 고품위 및 저가격 ZnO 박막 제조에 관한 연구 (A Study on the High Quality and Low Cost Fabrication Technology of ZnO Thin Films for Solar Cell Applications)

  • 이재형
    • 한국정보통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.191-196
    • /
    • 2010
  • 본 연구에서는 타겟 제작에 드는 비용을 줄이고, 타겟 이용의 효율성을 높이기 위해 기존의 소결된 세라믹 타겟 대신 분말 타겟으로 사용하여 알루미늄 도핑된 산화아연(Aluminum doped zinc oxde; AZO)박막을 마그네트론 스퍼터법에 의해 제조하고, 스퍼터 압력에 따른 박막 물성을 조사하였다. 유리 기판에 증착된 AZO 박막은 타깃 종류 및 스퍼터 압력에 관계없이 기판에 수직한 c-축 방향으로 우선 성장방위를 갖는 hexagonal 구조로 성장되었다. 스퍼터 압력이 증가함에 따라 이 면 방향으로의 결정성장이 촉진되었다. AZO 박막의 전기적, 광학적 특성은 스퍼터 압력 증가에 따라 향상되었으며, 15 mTorr에서 $6.5{\times}10^{-1}\;{\Omega}-cm$의 최소의 비저항 값을 나타내었다.

Electrical, Optical, and Electrochemical Corrosion Resistance Properties of Aluminum-Doped Zinc Oxide Films Depending on the Hydrogen Content

  • Cho, Soo-Ho;Kim, Sung-Joon;Jeong, Woo-Jun;Kim, Sang-Ho
    • 한국표면공학회지
    • /
    • 제51권2호
    • /
    • pp.116-125
    • /
    • 2018
  • Aluminum-doped zinc oxide (AZO) is a commonly used material for the front contact layer of chalcopyrite $CuInGaSe_2$ (CIGS) based thin film solar cells since it satisfies the requisite optical and electrical properties with low cost and abundant elemental availability. Low-resistivity and high-transmission front contacts have been developed for high-performance CIGS solar cells, and nearly meet the required performance. However, the durability of the cell especially for the corrosion resistance of AZO films has not been studied intensively. In this work, AZO films were prepared on Corning glass 7059 substrates by radio frequency magnetron sputtering depending on the hydrogen content. The electrical and optical properties and electrochemical corrosion resistance of the AZO films were evaluated as a function of the hydrogen content. With increasing hydrogen content to 6 wt%, the crystallinity, crystal size, and surface roughness of the films increased, and the resistivity decreased with increased carrier concentration, Hall mobility, oxygen vacancies, and $Zn(OH)_2$ binding on the AZO surface. At a hydrogen content of 6 wt%, the corrosion resistance was also relatively high with less columnar morphology, shallow pore channels, and lower grain boundary angles.