Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.6.401

AZO Transparent Electrodes for Semi-Transparent Silicon Thin Film Solar Cells  

Nam, Jiyoon (School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University)
Jo, Sungjin (School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.6, 2017 , pp. 401-405 More about this Journal
Abstract
Because silicon thin film solar cells have a high absorption coefficient in visible light, they can absorb 90% of the solar spectrum in a $1-{\mu}m$-thick layer. Silicon thin film solar cells also have high transparency and are lightweight. Therefore, they can be used for building integrated photovoltaic (BIPV) systems. However, the contact electrode needs to be replaced for fabricating silicon thin film solar cells in BIPV systems, because most of the silicon thin film solar cells use metal electrodes that have a high reflectivity and low transmittance. In this study, we replace the conventional aluminum top electrode with a transparent aluminum-doped zinc oxide (AZO) electrode, the band level of which matches well with that of the intrinsic layer of the silicon thin film solar cell and has high transmittance. We show that the AZO effectively replaces the top metal electrode and the bottom fluorine-doped tin oxide (FTO) substrate without a noticeable degradation of the photovoltaic characteristics.
Keywords
Semi-transparent; Silicon thin film solar cell; Aluminum doped zinc oxide; Building integrated photovoltaic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Peng, Y. Huang, and Z. Wu, Energ. Build., 43, 3592 (2011). [DOI: http://dx.doi.org/10.1016/j.enbuild.2011.09.032]   DOI
2 A. Henemann, Renewable Energy Focus, 9, 14 (2008). [DOI: http://dx.doi.org/10.1016/S1471-0846(08)70179-3]
3 M. Saifullah, J. Gwak, and J. H. Yun, J. Mater. Chem. A, 4, 8512 (2016). [DOI: http://dx.doi.org/10.1039/c6ta01016d]   DOI
4 S. Yoon, S. Tak, J. Kim, Y. Jun, K. Kang, and J. Park, Building and Encironment, 46, 1899 (2011). [DOI: http://dx.oi.org/10.1016/j.buildenv.2011.03.010]   DOI
5 G. E. Tulloch, J. Photochem. Photobiol. A, 164, 209 (2004). [DOI: http://dx.doi.org/10.1016/j.jphotochem.2004. 1.27]   DOI
6 B. P. Jelle, C. Breivik, and H. D. Rokenes, Sol. Energy Mater. Sol. Cells, 100, 69 (2012). [DOI: http://dx.doi.org/10.1016/j.solmat.2011.12.016]   DOI
7 Y. Yang, P.G.O. Brien, G. A. Ozin, and N. P. Kherani, Appl. Phys. Lett., 103, 221109 (2013). [DOI: http://dx.doi.org/10.1063/1.4833542]   DOI
8 H. Maurus, M. Schmid, B. Blersch, P. Lechner, and H. Schade, Refocus, 5, 22 (2004). [DOI: http://dx.doi.org/10.016/S1471-0846(04)00255-0]
9 Y. Lee, M. Choi, D. Kim, C. Kim, M. Song, J. Kang, Y. Jeong, K. Nam, S. Park, and S. Kwon, J. Phys. Chem. C., 116, 23231 (2012). [DOI: http://dx.doi.org/10.1021/jp306360h]   DOI
10 H. Zhou, W. Hsu, H. Duan, B. Bob, W. Yang, T. Song, C. Hsu, and Y. Yang, Energy Environ. Sci., 6, 2822 (2013). [DOI: http://dx.doi.org/10.1039/C3EE41627E]   DOI
11 J. Poortmans and V. Arkhipov, Thin Film Solar Cells (2006).
12 X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, Appl. Phys. Lett., 83, 1875 (2003). [DOI: http://dx.doi.org/10.1063/1.1605805]   DOI
13 B. Rech and H. Wagner, Appl. Phys. A, 69, 155 (1999). [DOI: http://dx.doi.org/10.1007/s003399900064]
14 H. Otaka, M. Kira, K. Yano, S. Ito, H. Mitekura, T. Kawata, and F. Matsui, J. Photochem. Photobiol. A, 164, 6 (2004). [DOI: http://dx.doi.org/10.1016/j.jphotochem.2003.11.012]
15 J. Nam, Y. Lee, C. S. Kim, H. Kim, D. H. Kim, and S. Jo, J. Nanomater., 2016, 3613928 (2016). [DOI: http://dx.doi.org/10.1155/2016/3613928]
16 J. Nam, Y. Lee, W. Choi, C. S. Kim, H. Kim, J. Kim, D. H. Kim, and S. Jo, Adv. Energy Mater., 6, 1601269, (2016). [DOI: http://dx.doi.org/10.1002/aenm.201601269]   DOI