• 제목/요약/키워드: Zinc oxide thin-film transistor

Search Result 120, Processing Time 0.028 seconds

Effect of Channel Scaling on Zinc Oxide Thin-Film Transistor Prepared by Atomic Layer Deposition

  • Choi, Woon-Seop
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권6호
    • /
    • pp.253-256
    • /
    • 2010
  • Different active layer thicknesses for zinc oxide (ZnO) bottom-contact thin-film transistors (TFTs) were fabricated with a poly-4-vinyphenol polymeric dielectric using injector type atomic layer deposition. The properties of the ZnO TFTs were influenced by the active thickness and width-to-length (W/L) ratio of the device. The threshold voltage of ZnO TFTs shifted positively as the active layer thickness decreased, while the subthreshold slope decreased. The W/L ratio of ZnO TFTs also affected the mobility and subthreshold slope. An optimized TFT structure exhibited an on-tooff current ratio of above 106 with solid saturation.

Atmospheric Pressure Plasma를 이용한 Oxide Thin Film Transistor의 특성 개선 연구

  • 문무겸;김가영;염근영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.582-582
    • /
    • 2013
  • Oxide TFT (thin film transistor) active channel layer에 대한 저온 열처리 공정은 투명하고 flexibility을 기반으로하는 display 산업과 AMOLED (active matrix organic light emitting diode) 분야 등 다양한 분야에서 필요로 하는 기술로서 많은 연구가 이루어지고 있다. 과거 active layer는 ALD (atomic layer deposition), CVD (chemical vapor deposition), pulse laser deposition, radio frequency-dc (RF-dc) magnetron sputtering 등과 같은 고가의 진공 장비를 이용하여 증착 되어져 왔으나 현재에는 진공 장비 없이 spin-coating 후 열처리 하는 저가의 공정이 주로 연구되어 지고 있다. Flexible 기판들은 일반적인 OTFT (oxide thin films Transistor)에 적용되는 열처리 온도로 공정 진행시 열에 의한 기판의 손상이 발생한다. Flexible substrate의 열에 의한 기판 손상을 막기 위해 저온 열처리 공정이 연구되고 있지만 기존 열처리와 비교하여 소자의 특성 저하가 동반 되었다. 본 연구에서는 Si 기판위에 SiO2 (100)를 절연층으로 증착하고 그 위에 IZO (indium zinc oxide) solution을 spin-coating 한뒤 $250^{\circ}C$ 이하의 온도에서 열처리하였다. 저온 공정으로 인하여 소자의 특성 저하가 동반 되었으므로 소자의 저하된 특성 복원하고자 post-treatment로 고가의 진공장비가 필요 없고 roll-to roll system 적용이 수월한 remote-type의 APP (atmospheric pressure plasma) 처리를 하였다. Post-treatment로 APP를 이용하여 $250^{\circ}C$ 이하에서 소자에 적용 가능한 on/off ratio를 얻을 수 있었다.

  • PDF

A Study on Wet Etch Behavior of Zinc Oxide Semiconductor in Acid Solutions

  • Seo, Bo-Hyun;Lee, Sang-Hyuk;Jeon, Jea-Hong;Choe, Hee-Hwan;Lee, Kang-Woong;Lee, Yong-Uk;Seo, Jong-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.926-929
    • /
    • 2007
  • A significant progress has been made in the characterization of zinc oxide (ZnO) semiconductor as a new semiconductor layer instead of amorphous Si semiconductor used in thin film transistor due to its high electron mobility at low deposition temperature which is quite suitable for flexible display and OLED devices. The wet pattering of ZnO is another important issue with regard to mass production of ZnO thin film transistor device. However, the wet behavior of ZnO thin film in aqueous wet etching solutions conventionally used un TFT industry has not been reported yet, in this work, wet corrosion behavior of RF magnetron sputtered ZnO thin film in various wet solutions such as phosphoric and nitric acid solutions was studied using by electrochemical analysis. The effects of deposition parameters such as RF power and oxygen partial pressure on corrosion rate are also examined.

  • PDF

투명 유연 박막 트랜지스터의 구현을 위한 열처리된 산화아연 박막의 전사방법 개발 (Transfer of Heat-treated ZnO Thin-film Plastic Substrates for Transparent and Flexible Thin-film Transistors)

  • 권순열;정동건;최영찬;이재용;공성호
    • 센서학회지
    • /
    • 제27권3호
    • /
    • pp.182-185
    • /
    • 2018
  • Zinc oxide (ZnO) thin films have the advantages of growing at a low temperature and obtaining high charge mobility (carrier mobility) [1]. Furthermore, the zinc oxide thin film can be used to control application resistance depending on its oxygen content. ZnO has the desired physical properties, a transparent nature, with a flexible display that makes it ideal for use as a thin-film transistor. Though these transparent flexible thin-film transistors can be manufactured in various manners, manufacturing large-area transistors using a solution process is easier owing to the low cost and flexible substrate. The advantage of being able to process at low temperatures has been attracting attention as a preferred method. However, in the case of a thin-film transistor fabricated through a solution process, it is reported that charge mobility is lower. To improve upon this, a method of improving the crystallinity through heat treatment and increasing electron mobility has been reported. However, as the heat treatment temperature is relatively high at $500^{\circ}C$, an application where a flexible substrate is absent would be more suitable.

산화인듐아연 박막 트랜지스터에서 질소 첨가가스가 활성층의 물성 및 소자의 특성에 미치는 영향 (Effects of Nitrogen Additive Gas on the Property of Active Layer and the Device Characteristic in Indium-zinc-oxide thin Film Transistors)

  • 이상혁;방정환;김원;엄현석;박진석
    • 전기학회논문지
    • /
    • 제59권11호
    • /
    • pp.2016-2020
    • /
    • 2010
  • Indium-zinc-oxide (IZO) films were deposited at room temperature via RF sputtering with varying the flow rate of additive nitrogen gas ($N_2$). Thin film transistors (TFTs) with an inverted staggered configuration were fabricated by employing the various IZO films, such as $N_2$-added and pure (i.e., w/o $N_2$-added), as active channel layers. For all the deposited IZO films, effects of additive $N_2$ gas on their deposition rates, electrical resistivities, optical transmittances and bandgaps, and chemical structures were extensively investigated. Transfer characteristics of the IZO-based TFTs were measured and characterized in terms of the flow rate of additive $N_2$ gas. The experimental results indicated that the transistor action occurred when the $N_2$-added (with $N_2$ flow rate of 0.4-1.0 sccm) IZO films were used as the active layer, in contrast to the case of using the pure IZO film.

On-axis 스퍼터링과 FTS 공정으로 증착한 ZTO 박막트랜지스터의 특성 (Characterization of ZTO Thin Films Transistor Deposited by On-axis Sputtering and Facing Target Sputtering(FTS))

  • 이세희;윤순길
    • 한국재료학회지
    • /
    • 제26권12호
    • /
    • pp.676-680
    • /
    • 2016
  • We have investigated the properties of thin film transistors(TFT) fabricated using zinc tin oxide(ZTO) thin films deposited via on-axis sputtering and FTS methods. ZTO thin films deposited by FTS showed lower root-mean-square(RMS) roughness and more uniformity than those deposited via on-axis sputtering. We observed enhanced electrical properties of ZTO TFT deposited via FTS. The ZTO films were deposited at room temperature via on-axis sputtering and FTS. The as-deposited ZTO films were annealed at $400^{\circ}C$. The TFT using the ZTO films deposited via FTS process exhibited a high mobility of $12.91cm^2/V.s$, a low swing of 0.80 V/decade, $V_{th}$ of 5.78 V, and a high $I_{on/off}$ ratio of $2.52{\times}10^6$.

Fabrication of Solution Processed Thin Film Transistor Using Zinc Oxide Nanoparticles

  • Lee, Sul;Jeong, Sun-Ho;Kim, Dong-Jo;Park, Bong-Kyun;Moon, Joo-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.703-706
    • /
    • 2006
  • Zinc oxide nanocrystals are attractive candidates for a solution-processable semiconductor for high performance thin film field effect transistors. We have studied ZnO thin film transistor fabricated by solution process and have improved $V_{th}$ by controlling the ZnO ink additives. Synthesized ZnO nanoparticles of 30nm were dispersed in solvent to make the ZnO ink. ZnO ink was spin coated on silicon wafer and after heat treatment electrodes were patterned.

  • PDF

The Influence of Silicon Doping on Electrical Characteristics of Solution Processed Silicon Zinc Tin Oxide Thin Film Transistor

  • Lee, Sang Yeol;Choi, Jun Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권2호
    • /
    • pp.103-105
    • /
    • 2015
  • Effect of silicon doping into ZnSnO systems was investigated using solution process. Addition of silicon was used to suppress oxygen vacancy generation. The transfer characteristics of the device showed threshold voltage shift toward the positive direction with increasing Si content due to the high binding energy of silicon atoms with oxygen. As a result, the carrier concentration was decreased with increasing Si content.