Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.12.676

Characterization of ZTO Thin Films Transistor Deposited by On-axis Sputtering and Facing Target Sputtering(FTS)  

Lee, Se-Hee (Department of Materials Science and Engineering, Chungnam National University)
Yoon, Soon-Gil (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.26, no.12, 2016 , pp. 676-680 More about this Journal
Abstract
We have investigated the properties of thin film transistors(TFT) fabricated using zinc tin oxide(ZTO) thin films deposited via on-axis sputtering and FTS methods. ZTO thin films deposited by FTS showed lower root-mean-square(RMS) roughness and more uniformity than those deposited via on-axis sputtering. We observed enhanced electrical properties of ZTO TFT deposited via FTS. The ZTO films were deposited at room temperature via on-axis sputtering and FTS. The as-deposited ZTO films were annealed at $400^{\circ}C$. The TFT using the ZTO films deposited via FTS process exhibited a high mobility of $12.91cm^2/V.s$, a low swing of 0.80 V/decade, $V_{th}$ of 5.78 V, and a high $I_{on/off}$ ratio of $2.52{\times}10^6$.
Keywords
zinc tin oxide; thin film transistor; facing target sputtering;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Suresh, P. Wellenius, A. Dhawan and J. Muth, Appl. Phys. Lett., 90, 123512 (2007).   DOI
2 H. J. Choi, H. J. Jung, S. G. Hur and S. G. Yoon (in Korean), J. KIEEME, 24, 126 (2011).
3 R. L. Hoff, Solid-State Electron., 50, 784 (2006).   DOI
4 H. J. Choi, S. G. Yoon, J. H. Lee and J. Y. Lee, ECS J. Solid State Sci. Technol., 1, Q106 (2012).   DOI
5 F. M. Hossain, J. Nishii, S. Takagi, A. Ohtomo and T. Fukumura, J. Appl. Phys., 94, 7768 (2003).   DOI
6 Y. Y. Choi, S. J. Kang and H. K. Kim, Curr. Appl. Phys., 12, S104 (2012).
7 Y. J. Kim, B. S. Yang, S. Oh, S. J. Han, H. W. Lee, J. Heo, J. K. Jeong and H. J. Kim, ACS Appl. Mater. Interfaces, 5, 3255 (2013).   DOI
8 J. M. Lee, B. H. Choi, M. J. Ji, J. H. Park, J. H. Kwon and B. K. Ju, Semicond. Sci. Technol., 24, 055008 (2009).   DOI
9 Y. Jeong, K. Song, K. Woo, T. Jun, Y. Jung and J. Moon (in Korean), Korean J. Mater. Res., 20, 401 (2010).   DOI
10 S. Martin, C. S. Chiang, J. Y. Nahm, T. Li, J. Kanicki and Y. Ugai, Jpn. J. Appl. Phys., 40, 530 (2001).   DOI
11 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature, 432, 488 (2004).   DOI
12 S. J. Seo, C. G. Choi, Y. H. Hwang and B. S. Bae, J. Phys. D: Appl. Phys., 42, 035106 (2009).   DOI
13 P. Barquinha, A. M. Vila, G. Goncalves, L. Pereira, R. Martins, J. R. Morante and E. Fortunate, IEEE Trans. Electron Dev., 55, 954 (2008).   DOI
14 J. S. Lee, Y. J. Kim, Y. U. Lee, Y. H. Kim, J. Y. Kwon and M. K. Han, Jpn. J. Appl. Phys., 51, 061101 (2012).   DOI
15 H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong and D. A. Keszler, Appl. Phys. Lett., 86, 013503 (2005).   DOI
16 B. D. Ahn, D. W. Choi, C. Choi and J. S. Park, Appl. Phys. Lett., 105, 092103 (2014).   DOI