Browse > Article
http://dx.doi.org/10.5370/KIEE.2010.59.11.2016

Effects of Nitrogen Additive Gas on the Property of Active Layer and the Device Characteristic in Indium-zinc-oxide thin Film Transistors  

Lee, Sang-Hyuk (한양대 공대 전자전기제어계측공학과)
Bang, Jung-Hwan (한양대 공대 전자전기제어계측공학과)
Kim, Won (한양대 공대 전자전기제어계측공학과)
Uhm, Hyun-Seok (한양대 공대 전자전기제어계측공학과)
Park, Jin-Seok (한양대 전자전기제어계측공학과)
Publication Information
The Transactions of The Korean Institute of Electrical Engineers / v.59, no.11, 2010 , pp. 2016-2020 More about this Journal
Abstract
Indium-zinc-oxide (IZO) films were deposited at room temperature via RF sputtering with varying the flow rate of additive nitrogen gas ($N_2$). Thin film transistors (TFTs) with an inverted staggered configuration were fabricated by employing the various IZO films, such as $N_2$-added and pure (i.e., w/o $N_2$-added), as active channel layers. For all the deposited IZO films, effects of additive $N_2$ gas on their deposition rates, electrical resistivities, optical transmittances and bandgaps, and chemical structures were extensively investigated. Transfer characteristics of the IZO-based TFTs were measured and characterized in terms of the flow rate of additive $N_2$ gas. The experimental results indicated that the transistor action occurred when the $N_2$-added (with $N_2$ flow rate of 0.4-1.0 sccm) IZO films were used as the active layer, in contrast to the case of using the pure IZO film.
Keywords
Indium-zinc-oxide (IZO); Nitrogen addition; Thin film transistor; Active layer; Sputtering;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-j. Cho, and H. Morkoc, J. Appl. Phys, 98 (2005) p.041301   DOI   ScienceOn
2 K. S. Jang, H. S. Park, S. W. Jung, N. V. Duy, Y. K. Kim, J. H. Cho, H. W. Choi, Y. Y. Kwon, W. B. Lee, D. Y. Gong, S. M. Park, J. S. Yi, D. Y. Kim, and H. J. Kim, Thin Solid Films, 518 (2010) p.2808   DOI   ScienceOn
3 E. Fortunato, P. Barquinha, A. Pimentel, L. Pereira, G. Goncalves, and R. Martins, Phys. Stat. Sol. (RRL), 1(1) (2007) p.R34   DOI   ScienceOn
4 B. E. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg, and C. G. Granqvist, Phy. Rev. B, 37 (1988) p.10244   DOI   ScienceOn
5 L. Boukhris and J.-M. Poitevin, Thin Solid Films, 310 (1997) p.222   DOI   ScienceOn
6 S. J. Lim, J. M. Kim, D. Y. Kim, S. J. Kwon, J. S. Park, and H. J. Kim, J. Electrochem. Soc. 157 (2010) p.H214   DOI   ScienceOn
7 S. H. Jeong, B. S. Kim, and B. T. Lee, Appl. Phys. Lett, 82 (2003) p.2625   DOI   ScienceOn
8 L. C. Chao, Y. R. Shih, Y. K. Li, J. W. Chen, J. D. Wu, and C. H. Ho, Appl. Surf. Sci. 256 (2010) p.4153   DOI   ScienceOn
9 S. H. Lee, J. H. Bang, W. Kim, H. S. Uhm, and J. S. Park, Proc. KIEE Summer Conference, 41 (2010) p.355
10 Y. K. Moon, S. H. Lee, D. H. Kim, D. H. Lee, C. O. Jeong, and J. W. Park, Jpn. Appl. Phys. 48 (2009) p.031301   DOI
11 S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, Appl. Phys. Lett. 49 (1986) p.394   DOI
12 P. Barquinha, G. Goncalves, L. Pimentel, L. Pereira, G. Goncalves, and R. Martins, Thin Solid Films, 515 (2007) p.8450   DOI   ScienceOn
13 H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, and H. Kumoni, Appl. Phys. Lett, 89 (2006) p.112123   DOI   ScienceOn
14 D. Hong and J. F. Wager, J. Vac. Sci. Technol. B, 23 (2005) p.25   DOI   ScienceOn
15 T. Nosaka, M. Yoshitake, A. Okamoto, S. Ogawa, Y. Nakayama, Thin Solid Films, 348 (1999) p.8   DOI   ScienceOn
16 D. C. Paine, B. Yaglioglu, Z. Beiley, and S. H. Lee, Thin Solid Films, 516 (2008) p.5894   DOI   ScienceOn