• Title/Summary/Keyword: Zinc oxide thin film

Search Result 416, Processing Time 0.026 seconds

Characteristics of indium zinc oxide thin films with input power and film thickness (투입전력 및 두께 변화 조건에 따른 Indium zinc oxide 박막의 특성)

  • Rim, You-Seung;Kim, Sang-Mo;Keum, Min-Jong;Son, In-Hwan;Jang, Kyung-Wook;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.406-407
    • /
    • 2007
  • We prepared indium zinc oxide (IZO) thin film for cathode electrode such as an application of flat panel display by using the facing targets sputtering (FTS) method at room temperature. The effects of input power and film thickness were investigated with respect to physical and optical properties of films such as deposition rate, electrical properties, microstructure and transmittance. We could obtain properties of IZO thin films of under $10^{-3}\;{\Omega}-cm$ in resistivity and the thin films of over 90% in transmittance. Also, we obtained IZO thin films which were an amorphous structure.

  • PDF

Zinc Oxide Nanostructured Thin Film as an Efficient Photoanode for Photoelectrochemical Water Oxidation

  • Park, Jong-Hyun;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.441-446
    • /
    • 2020
  • Synthesizing nanostructured thin films of oxide semiconductors is a promising approach to fabricate highly efficient photoelectrodes for hydrogen production via photoelectrochemical (PEC) water splitting. In this work, we investigate the feasibility as an efficient photoanode for PEC water oxidation of zinc oxide (ZnO) nanostructured thin films synthesized via a simple method combined with sputtering Zn metallic films on a fluorine-doped tin oxide (FTO) coated glass substrate and subsequent thermal oxidation of the sputtered Zn metallic films in dry air. Characterization of the structural, optical, and PEC properties of the ZnO nanostructured thin film synthesized at varying Zn sputtering powers reveals that we can obtain an optimum ZnO nanostructured thin film as PEC photoanode at a sputtering power of 40 W. The photocurrent density and optimal photocurrent conversion efficiency for the optimum ZnO nanostructured thin film photoanode are found to be 0.1 mA/㎠ and 0.51 %, respectively, at a potential of 0.72 V vs. RHE. Our results illustrate that the ZnO nanostructured thin film has promising potential as an efficient photoanode for PEC water splitting.

Effect of Oxygen Binding Energy on the Stability of Indium-Gallium-Zinc-Oxide Thin-Film Transistors

  • Cheong, Woo-Seok;Park, Jonghyurk;Shin, Jae-Heon
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.966-969
    • /
    • 2012
  • From a practical viewpoint, the topic of electrical stability in oxide thin-film transistors (TFTs) has attracted strong interest from researchers. Positive bias stress and constant current stress tests on indium-gallium-zinc-oxide (IGZO)-TFTs have revealed that an IGZO-TFT with a larger Ga portion has stronger stability, which is closely related with the strong binding of O atoms, as determined from an X-ray photoelectron spectroscopy analysis.

Influence of Surface Texturing on the Electrical and Optical Properties of Aluminum Doped Zinc Oxide Thin Films

  • Lee, Jaeh-Yeong;Shim, Joong-Pyo;Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.461-465
    • /
    • 2011
  • An aluminum doped zinc oxide (AZO) film for front contacts of thin film solar cells, in this work, were deposited by r.f. magnetron sputtering, and then etched in diluted hydrochloric acid solution for different times. Effects of surface texturing on the electro-optical properties of AZO films were investigated. Also, to clarify the light trapping of textured AZO film, amorphous silicon thin film solar cells were fabricated on the textured AZO/glass substrate and the performance of solar cells were studied. After texturing, the spectral haze at the visible range of 400 ~750 nm increased substantially with the etching time, without a change in the resistivity. The conversion efficiency of amorphous Si solar cells with textured AZO film as a front electrode was improved by the increase of short-circuit current density ($J_{sc}$), compared to cell with flat AZO films.

Influence of Source/Drain Electrodes on the Properties of Zinc Tin Oxide Transparent Thin Film Transistors (Zinc Tin Oxide 투명 박막트랜지스터의 특성에 미치는 소스/드레인 전극의 영향)

  • Ma, Tae Young;Cho, Mu Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.433-438
    • /
    • 2015
  • Zinc tin oxide transparent thin film transistors (ZTO TTFTs) were fabricated by using $n^+$ Si wafers as gate electrodes. Indium (In), aluminum (Al), indium tin oxide (ITO), silver (Ag), and gold (Au) were employed for source and drain electrodes, and the mobility and the threshold voltage of ZTO TTFTs were observed as a function of electrode. The ZTO TTFTs adopting In as electrodes showed the highest mobility and the lowest threshold voltage. It was shown that Ag and Au are not suitable for the electrodes of ZTO TTFTs. As the results of this study, it is considered that the interface properties of electrode/ZTO are more influential in the properties of ZTO TTFTs than the conductivity of electrode.

Study on the Seasoning Effect for Amorphous In-Ga-Zn-O Thin Film Transistors with Soluble Hybrid Passivation

  • Yun, Su-Bok;Kim, Du-Hyeon;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.256-256
    • /
    • 2012
  • Oxide semiconductors such as zinc tin oxide (ZTO) or indium gallium zinc oxide (IGZO) have attracted a lot of research interest owing to their high potential for application as thin film transistors (TFTs) [1,2]. However, the instability of oxide TFTs remains as an obstacle to overcome for practical applications to electronic devices. Several studies have reported that the electrical characteristics of ZnO-based transistors are very sensitive to oxygen, hydrogen, and water [3,4,5]. To improve the reliability issue for the amorphous InGaZnO (a-IGZO) thin-film transistor, back channel passivation layer is essential for the long term bias stability. In this study, we investigated the instability of amorphous indium-gallium-zinc-oxide (IGZO) thin film transistors (TFTs) by the back channel contaminations. The effect of back channel contaminations (humidity or oxygen) on oxide transistor is of importance because it might affect the transistor performance. To remove this environmental condition, we performed vacuum seasoning before the deposition of hybrid passivation layer and acquired improved stability. It was found that vacuum seasoning can remove the back channel contamination if a-IGZO film. Therefore, to achieve highly stable oxide TFTs we suggest that adsorbed chemical gas molecules have to be eliminated from the back-channel prior to forming the passivation layers.

  • PDF

Thickness Effects of Active Layers on the Properties of Zinc Tin Oxide Transparent Thin Film Transistors (Zinc Tin Oxide 투명 박막트랜지스터의 특성에 미치는 활성층 두께의 영향)

  • Ma, Tae Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.7
    • /
    • pp.433-437
    • /
    • 2014
  • Transparent thin film transistors were fabricated on $n^+$-Si wafers coated by $Al_2O_3/SiO_2$. Zinc tin oxide (ZTO) films deposited by rf magnetron sputtering were employed for active layers. The mobility (${\mu}s$), threshold voltage ($V_T$), and subthreshold swing (SS) dependances on ZTO thickness were analyzed. The $V_T$ decreased with increasing ZTO thickness. The ${\mu}s$ raised from $5.1cm^2/Vsec$ to $27.0cm^2/Vsec$ by increasing ZTO thickness from 7 nm to 12 nm, and then decreased with ZTO thickness above 12 nm. The SS was proportional to ZTO thickness.

3-dimensional nanostructured ZnO gas sensor (3차원 ZnO 나노구조체 가스센서)

  • Park, Yong-Wook;Shin, Hyun-Yong;Yoon, Seok-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.356-360
    • /
    • 2010
  • Due to the high surface-to-volume ratio, the 3-dimensional(3D) nanostructures of metal oxides are regarded as the best candidate materials for the chemical gas sensors. Here we have synthesised flower-like 3D zinc oxide nanostructures through a simple hydrothermal route. Specific surface area of the 3D zinc oxide nanostructures synthesised in different pH values from 9.0 to 12.0 were evaluated by using a BET analyzer and the results were compared with that of a zinc oxide thin film fabricated by rf sputtering. Using interdigitated electrodes, superior CO gas sensing properties of the 3D zinc oxide nanostructures on the ZnO thin film to those of the ZnO thin film were demonstrated.

Preparation and Evaluation of the Properties of Al-doped Zinc Oxide (AZO) Films Deposition by Rapid Thermal Annealing (급속 열처리 방법에 의한 Al-doped Zinc Oxide (AZO) Films의 제조 및 특성 평가)

  • Kim, Sung-Jin;Choi, Kyoon;Choi, Se-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.543-551
    • /
    • 2012
  • In this study, transparent conducting Al-doped Zinc Oxide (AZO) films with a thickness of 150 nm were prepared on corning glass substrate by the RF magnetron sputtering with using a Al-doped zinc oxide (AZO), ($Al_2O_3$: 2 wt%) target at room temperature. This study investigated the effect of rapid thermal annealing temperature and oxygen ambient on structural, electrical and optical properties of Al-doped zinc oxide (AZO) thin films. The films were annealed at temperatures ranging from 400 to $700^{\circ}C$ by using Rapid thermal equipment in oxygen ambient. The effect of RTA treatment on the structural properties were studied by x-ray diffraction and atomic force microscopy. It is observed that the Al-doped zinc oxide (AZO) thin film annealed at $500^{\circ}C$ at 5 minute oxygen ambient gas reveals the strongest XRD emission intensity and narrowest full width at half maximum among the temperature studied. The enhanced UV emission from the film annealed at $500^{\circ}C$ at 5 minute oxygen ambient gas is attributed to the improved crystalline quality of Al-doped zinc oxide (AZO) thin film due to the effective relaxation of residual compressive stress and achieving maximum grain size.

Effects of an Aluminum Contact on the Carrier Mobility and Threshold Voltage of Zinc Tin Oxide Transparent Thin Film Transistors

  • Ma, Tae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.609-614
    • /
    • 2014
  • We fabricated amorphous zinc tin oxide (ZTO) transparent thin-film transistors (TTFTs). The effects of Al electrode on the mobility and threshold voltage of the ZTO TTFTs were investigated. It was found that the aluminum (Al)-ZTO contact decreased the mobility and increased the threshold voltage. Traps, originating from $AlO_x$, were assumed to be the cause of degradation. An indium tin oxide film was inserted between Al and ZTO as a buffer layer, forming an ohmic contact, which was revealed to improve the performance of ZTO TTFTs.