• Title/Summary/Keyword: Zero region

Search Result 376, Processing Time 0.029 seconds

Optimal Joint Trajectory Generation for Biped Walking of Humanoid Robot based on Reference ZMP Trajectory (목표 ZMP 궤적 기반 휴머노이드 로봇 이족보행의 최적 관절궤적 생성)

  • Choi, Nak-Yoon;Choi, Young-Lim;Kim, Jong-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.92-103
    • /
    • 2013
  • Humanoid robot is the most intimate robot platform suitable for human interaction and services. Biped walking is its basic locomotion method, which is performed with combination of joint actuator's rotations in the lower extremity. The present work employs humanoid robot simulator and numerical optimization method to generate optimal joint trajectories for biped walking. The simulator is developed with Matlab based on the robot structure constructed with the Denavit-Hartenberg (DH) convention. Particle swarm optimization method minimizes the cost function for biped walking associated with performance index such as altitude trajectory of clearance foot and stability index concerning zero moment point (ZMP) trajectory. In this paper, instead of checking whether ZMP's position is inside the stable region or not, reference ZMP trajectory is approximately configured with feature points by which piece-wise linear trajectory can be drawn, and difference of reference ZMP and actual one at each sampling time is added to the cost function. The optimized joint trajectories realize three phases of stable gait including initial, periodic, and final steps. For validation of the proposed approach, a small-sized humanoid robot named DARwIn-OP is commanded to walk with the optimized joint trajectories, and the walking result is successful.

Design of nonlinear photonic crystal fibers with ultra-flattened zero dispersion for supercontinuum generation

  • Kumar, Pranaw;Fiaboe, Kokou Firmin;Roy, Jibendu Sekhar
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.282-291
    • /
    • 2020
  • The study reports on the design and performance of two air-filled and two partial ethanol-filled photonic crystal fiber (PCF) structures with a tetra core for supercontinuum generation. The PCFs are nonlinear with ultra-flattened zero dispersion. Holes with smaller areas are used to create a tetra-core PCF structure. Ethanol is filled in the holes of smaller area while the larger holes of cladding region are airfilled. Optical properties including dispersion, effective mode area, confinement loss, normalized frequency, and nonlinear coefficient of the designed PCF structures are investigated via full vector finite difference time domain (FDTD) method. A PCF structure with lead silicate as wafer exhibits significantly better results than a PCF structure with silica as wafer. However, both structures report dispersion at a telecommunication wavelength corresponding to 1.55 ㎛. Furthermore, the PCF structure with lead silicate as wafer exhibits a very high nonlinear coefficient corresponding to 1375 W-1 km-1 at the same wavelength. This scheme can be used for optical communication systems and in optical devices by exploiting the principle of nonlinearity.

Heat Transfer Behavior of Viscoelastic Fluid including buoyancy effect with Modified Temperature Dependent Viscosity Model in a Rectangular Duct (수정점도 모델을 이용한 직사각형 덕트에서의 부력을 고려한 점탄성 유체의 열전달 특성)

  • Sohn C. H.;Jang J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.192-198
    • /
    • 1999
  • The present study proposes modified temperature-dependent non-Newtonian viscosity model and investigates flow characters and heat transfer enhancement of the viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. The proposed modified temperature dependent viscosity model has non-zero value near the high temperature and high shear rate region while on the existing viscosity models have zero value. Two versions of thermal boundary conditions involving difference combination of heated walls and adiabatic walls are analyzed in this study. The combined effect of temperature dependent viscosity, buoyancy, and secondary flow caused by second normal stress difference are ail considered. The Reiner-Rivlin model is adopted as a viscoelastic fluid model to simulate the secondary flow caused by second normal stress difference. Calculated Nusselt numbers by the modified temperature-dependent viscosity model gives under prediction than the existing temperature-dependent viscosity model in the regions of thermally developed with same secondary normal stress difference coefficients with experimental results in the regions of thermally developed. The heat transfer enhancement of the viscoelastic fluid in a 2:1 rectangular duct is highly dependent on the secondary flow caused by the magnitude of second normal stress difference.

  • PDF

Balance Control of a Biped Robot Using the ZMP State Prediction of the Kalman Estimator (칼만예측기의 ZMP 상태추정을 통한 이족로봇의 균형제어기법)

  • Park, Sang-Bum;Han, Young-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.601-607
    • /
    • 2006
  • This paper proposes a novel balance control scheme of a biped robot to predict the next position of ZMP using Kalman Filter. The mathematical model of the biped robot is generally approximated by 3D-LIPM(3D-Linear Inverted Pendulum Mode), but it cannot completely express the robot's dynamics. The stability of the biped robot depends on whether the ZMP(Zero Moment Point) position is in the stability region or out of. And the internal error between the robot mechanism and its model could affect the stability of a robot. Therefore, the proposed balance control not reduces the internal error, but also timely generates the proper control. The experiment of the proposed balance control is simulated on the virtual workspace where the biped robot may encounter with various difficulties.

Performance of Adhesives in Glulam after Short Term Fire Exposure

  • Quiquero, Hailey;Chorlton, Bronwyn;Gales, John
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.299-311
    • /
    • 2018
  • As engineered timber such as Glulam is seeing increasing use in tall timber buildings, building codes are adapting to allow for this. In order for this material to be used confidently and safely in one of these applications, there is a need to understand the effects that fire can have on an engineered timber structural member. The post-fire resilience aspect of glulam is studied herein. Two sets of experiments are performed to consider the validity of zero strength guidance with respect to short duration fire exposure on thin glulam members. Small scale samples were heated in a cone calorimeter to different fire severities. These samples illustrated significant strength loss but high variability despite controlled quantification of char layers. Large scale samples were heated locally using a controlled fuel fire in shear and moment locations along the length of the beam respectively. Additionally, reduced cross section samples were created by mechanically carving a way an area of cross section equal to the area lost to char on the heated beams. All of the samples were then loaded to failure in four-point (laterally restrained) bending tests. The beams that have been burnt in the shear region were observed as having a reduction in strength of up to 34.5% from the control beams. These test samples displayed relatively little variability, apart from beams that displayed material defects. The suite of testing indicated that zero strength guidance may be under conservative and may require increasing from 7 mm up to as much as 23 mm.

Review of the Study on Mechanical Properties of Rock Under the Polar Climate Condition (극지 암석의 역학적 특성 분석에 관한 연구 동향)

  • Ryu, Sung-Hoon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.241-251
    • /
    • 2010
  • The polar region is in the limelight for an academic worth as well as plenty of natural resources. The study on the polar region was reviewed for better understanding of the polar region and its rock properties. The antarctica has a windy and dry climate along with the lowest temperature on the earth. The thermal distribution according to depth in the area was reported: The freezing-thawing process was repeated in shallow depth, and the temperature falls down below zero under the specific depth. There is a great temperature difference between the atmosphere and rock. A research reported for the degree of weathering of the antarctic slope by using Schmidt hammer and Taffoni test. The rock specimens weathered by repeated freezing-thawing process were tested of the shore hardness and uniaxial compressive strength: The rock strength gradually decreased as the freezing-thawing process was repeated. The comprehensive mechanical properties of the polar region rocks and the relationship between the laboratory weathering test result and the real rock property change in the site remain as future research topics.

Depletion region analysis of silicon substrate using finite element methods (유한요소법을 이용한 실리콘 기판에서의 공핍 영역 해석)

  • Byeon, Gi-Ryang;Hwang, Ho-Jeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • In this paper, new simple method for the calculation of depletion region under complex geometry and general purpose numerical simulator that could handle this were developed and applied in the analysis of SCM with nanoscale tip, which is a promising tool for high resolution dopant profiling. Our simple depletion region seeking algorithm alternatively switches material of elements to align ionized element boundary with contour of zero potential. To prove the validity of our method we examined whether our results satisfy the definition of depletion region and compared those with known values of un junction and MOS structure. By modeling of capacitance based on the shape of depletion region and potential distribution, we could calculate the CV curve and dC/dV curve between silicon substrate and nanoscale SCM tip.

Socioeconomic Equity in Regional Distribution of Health Care Resources in Korea (지역의 경제수준에 따른 의료자원 분포의 형평성 분석)

  • Jeon, Bo-Young;Choi, Su-Min;Kim, Chang-Yup
    • Health Policy and Management
    • /
    • v.22 no.1
    • /
    • pp.85-108
    • /
    • 2012
  • One of the ways to achieve the principle of equal access for equal needs, availability and geographical accessibility of health care resources regardless of resident sites is important. The purpose of this paper is to measure socioeconomic inequities in distribution of health care resources among regions in the Republic of Korea (hereafter Korea). Data were extracted from regional statistics of National Health Insurance, Community Health Survey, Korea Social Science Data Archive, and Korean Statistical Information Services at the same period of 2009. The dependent variables were the number of health workforce and health care facilities in each region. The proxy indicator of regional socioeconomic status was local tax per person. To identify whether inequalities among regions, we examined the concentration index(CI) and indirectly standardized CI by controlling each region's demographics and need factors. Total observations were 232 districts in nationwide, and we analyzed separately Seoul(25 districts) and non-Seoul areas(207 districts). The standardized CI values of health care resources were positive(favoring the rich region) across the nation in almost all kinds of resources. Especially the number of specialist, dentist, dental clinics, clinics, oriental medical clinics, pharmacists, and pharmacies were statistically significantly favoring the rich region. But the CI for the number of long-term care hospitals, public health centers were negative(favoring the poor region). The tendency of CI presenting positive values were increased in Seoul area. But in the case of non-Seoul, the CI indexes were nearly zero. The results suggest that except the Seoul area, little regional socioeconomic-related inequalities were observed in the distribution of health care resources in Korea.

Analysis of suppressed thermal conductivity using multiple nanoparticle layers (다중층 나노구조체를 통한 열차단 특성 제어)

  • Tae Ho Noh;Ee Le Shim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.233-242
    • /
    • 2023
  • In recent years, energy-management studies in buildings have proven useful for energy savings. Typically, during heating and cooling, the energy from a given building is lost through its windows. Generally, to block the entry of ultraviolet (UV) and infrared (IR) rays, thin films of deposited metals or metal oxides are used, and the blocking of UV and IR rays by these thin films depends on the materials deposited on them. Therefore, by controlling the thicknesses and densities of the thin films, improving the transmittance of visible light and the blocking of heat rays such as UV and IR may be possible. Such improvements can be realized not only by changing the two-dimensional thin films but also by altering the zero-dimensional (0-D) nanostructures deposited on the films. In this study, 0-D nanoparticles were synthesized using a sol -gel procedure. The synthesized nanoparticles were deposited as deep coatings on polymer and glass substrates. Through spectral analysis in the UV-visible (vis) region, thin-film layers of deposited zinc oxide nanoparticles blocked >95 % of UV rays. For high transmittance in the visible-light region and low transmittance in the IR and UV regions, hybrid multiple layers of silica nanoparticles, zinc oxide particles, and fluorine-doped tin oxide nanoparticles were formed on glass and polymer substrates. Spectrophotometry in the UV-vis-near-IR regions revealed that the substrates prevented heat loss well. The glass and polymer substrates achieved transmittance values of 80 % in the visible-light region, 50 % to 60 % in the IR region, and 90 % in the UV region.

A Deep Optical Survey of Young Stars in the Carina Nebula. I. UBVRI Photometric Data and Fundamental Parameters

  • Hyeonoh Hur;Beomdu Lim;Moo-Young Chun
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.1
    • /
    • pp.97-115
    • /
    • 2023
  • We present the deep homogeneous UBV RI photometric data of 135,071 stars down to V ~ 23 mag and I ~ 22 mag toward the Carina Nebula. These stars are cross-matched with those from the previous surveys in the X-ray, near-infrared, and mid-infrared wavelengths as well as the Gaia Early Data Release 3 (EDR3). This master catalog allows us to select reliable members and determine the fundamental parameters distance, size, stellar density of stellar clusters in this star-forming region. We revisit the reddening toward the nebula using the optical and the near-infrared colors of early-type stars. The foreground reddening [E(B-V)fg] is determined to be 0.35 ± 0.02, and it seems to follow the standard reddening law. On the other hand, the total-to-selective extinction ratio of the intracluster medium (RV,cl) decreases from the central region (Trumpler 14 and 16, RV,cl ~ 4.5) to the northern region (Trumpler 15, RV,cl ~ 3.4). It implies that the central region is more dusty than the northern region. We find that the distance modulus of the Carina Nebula to be 11.9 ± 0.3 mag (d = 2.4 ± 0.35 kpc) using a zero-age main-sequence fitting method, which is in good agreement with that derived from the Gaia EDR3 parallaxes. We also present the catalog of 3,331 pre-main-sequence (PMS) members and 14,974 PMS candidates down to V ~ 22 mag based on spectrophotometric properties of young stars at infrared, optical, and X-ray wavelengths. From the spatial distribution of PMS members and PMS candidates, we confirm that the member selection is very reliable down to faint stars. Our data will have a legacy value for follow-up studies with different scientific purposes.