Browse > Article
http://dx.doi.org/10.4218/etrij.2019-0024

Design of nonlinear photonic crystal fibers with ultra-flattened zero dispersion for supercontinuum generation  

Kumar, Pranaw (School of Electronics Engineering, Kalinga Institute of Industrial Technology)
Fiaboe, Kokou Firmin (School of Electronics Engineering, Kalinga Institute of Industrial Technology)
Roy, Jibendu Sekhar (School of Electronics Engineering, Kalinga Institute of Industrial Technology)
Publication Information
ETRI Journal / v.42, no.2, 2020 , pp. 282-291 More about this Journal
Abstract
The study reports on the design and performance of two air-filled and two partial ethanol-filled photonic crystal fiber (PCF) structures with a tetra core for supercontinuum generation. The PCFs are nonlinear with ultra-flattened zero dispersion. Holes with smaller areas are used to create a tetra-core PCF structure. Ethanol is filled in the holes of smaller area while the larger holes of cladding region are airfilled. Optical properties including dispersion, effective mode area, confinement loss, normalized frequency, and nonlinear coefficient of the designed PCF structures are investigated via full vector finite difference time domain (FDTD) method. A PCF structure with lead silicate as wafer exhibits significantly better results than a PCF structure with silica as wafer. However, both structures report dispersion at a telecommunication wavelength corresponding to 1.55 ㎛. Furthermore, the PCF structure with lead silicate as wafer exhibits a very high nonlinear coefficient corresponding to 1375 W-1 km-1 at the same wavelength. This scheme can be used for optical communication systems and in optical devices by exploiting the principle of nonlinearity.
Keywords
dispersion; nonlinear coefficient; photonic crystal fibers; supercontinuum generation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. E. Monfared and S. A. Ponomarenko, Extremely nonlinear carbon-disulfide-filled photonic crystal fiber with controllable dispersion, Opt. Material. 88 (2019), 406-411.   DOI
2 L. Cherbi et al., Modelling of two rings photonic crystal fiber with scalar element method, J. Optoelectron. Adv. Mater. 15 (2013), no. 11-12, 1385-1391.
3 F. Poletti et al., Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers, Opt. Express 13 (2005), 3728-3736.   DOI
4 K. Saitoh, N. Florous, and M. Koshiba, Ultra flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement loss, Opt. Express 13 (2005), 8365-8371.   DOI
5 M. Zhang et al., Dispersion ultra-flattened square lattice photonic crystal fiber with small effective mode area and low confinement loss, Optik 125 (2014), 1610-1614.   DOI
6 Z. L. Liu et al., Characteristics of a large negative dispersion and low confinement losses PCF, Semicond. Optoelectr, (2008).
7 K. Saitoh et al., Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion, Opt. Express 11 (2003), 843-852.   DOI
8 T. L. Wu and C. H. Chao, A novel ultra-flattened dispersion photonic crystal fiber, IEEE Photon. Technol. Lett. 17 (2005), 67-69.   DOI
9 S. Yiou, Simulated Raman scattering in an ethanol core microstructured optical fiber, Opt. Express 13 (2005), 4786-4791.   DOI
10 C. Martelli et al., Water core fresnel fiber, Opt. Express 13 (2005), 3890-3895.   DOI
11 T. T. Alkeskjod, Highly tunable large core single mode liquid crystal photonic band gap fiber, App. Opt. 45 (2006), 2261-2264.   DOI
12 F. M. Cox, A. Agyorus, and M. C. J. Large, Liquid filled hollow core microstructured polymer optical fiber, Opt. Express 14 (2006), 4135-4140.   DOI
13 C. S. Kumar and R. Anbazhagan, Investigation on chalcogenide and silica based photonic crystal fibers with circular and octagonal core, AEU - Int, J. Electron. Commun. 72 (2017), 40-45.   DOI
14 K. Nielsen et al., Selective filling of photonic crystal fibres, J. Opt. A Pure Appl. Opt. 7 (2005), no. 8, L:13-L:20.   DOI
15 Y. Ni et al., Dual-core photonic crystal fiber for dispersion compensation, IEEE Photon. Technol. Lett. 16 (2004), 1516-1518.   DOI
16 T. S. Reena et al., Rectangular-core large mode area photonic crystal fiber for high power applications: Design and analysis, Appl. Opt. 55 (2016), 4095-4100.   DOI
17 M. S. Islam et al., A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime, IEEE Sens. J. 18 (2018), 575-582.   DOI
18 S. Rana et al., Single mode porous fiber for low loss polarization maintaining terahertz transmission, Opt. Eng. 55 (2016), 1-6.
19 P. Kumar, A. Tripathy, and J. S. Roy, Design and analysis of single mode photonic crystal fibers with zero dispersion and ultra-low loss, Int. J. Electron. Telecommun. 64 (2018), no. 4, 541-546.
20 P. S. Majhi and R. Choudhary, Circular photonic crystal fibers: numerical analysis of chromatic dispersion and loss, ISRN Opt. 2013 (2013), 1-9.
21 P. Kumar, V. Kumar, and J. S. Roy, Design of quad core photonic crystal fibers with flattened zero dispersion, Int. J. Electron. Commun. (AEÜ) 98 (2019), 265-272.   DOI
22 F. Zolla et al., Foundations of photonic crystal fibers. Published by Imperial College Press and distributed by World Scientific Publishing Co., 2005.
23 A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics, 1st, ed, South Asian Edition, 1999.
24 X. Freng et al., Single-mode tellurite glass holey fibre with extremely large mode area for infrared nonlinear applications, Opt. Express 16 (2008), no. 18, 13651-13656.   DOI
25 J. C. Knight et al., All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett. 21 (1996), 1547-1549.   DOI
26 P. Kumar et al., Dodecagonal photonic crystal fibers with negative dispersion and low confinement loss, Optik 144 (2017), 363-369.   DOI
27 O. Blanch et al., Highly birefringent photonic crystal fibres, Opt. Lett. 25 (2000), 1325-1327.   DOI
28 T. A. Birks, J. C. Knight, and P. S. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett. 22 (1997), 961-963.   DOI
29 S. M. A. Razza and Y. Namihira, Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers, IEEE Photon. Technol. Lett. 20 (2008), 249-251.   DOI
30 M. Tiwari and V. Janyani, Two octave spanning supercontinuum in a soft glass photonic crystal fiber suitable for 1.55-${\mu}m$ pumping, J. Lightwave Technol. 29 (2011), no. 23, 3560-3565.   DOI
31 R. Kumari, M. Sharma, and S. Konar, Lead silicate fiber with small dispersion and large nonlinearity at telecommunication wavelength, Optik 126 (2015), 2659-2662.   DOI
32 J. S. Chiang and T. L. Wu, Analysis of propagation characteristics for an octagonal photonic crystal fiber (O-PCF), Opt. Commun. 258 (2006), 170-176.   DOI
33 N. J. Flororus, K. Saitoh, and M. Koshiba, The role of artificial defects for engineering large effective mode area, flat chromatic dispersion and low leakage losses in photonic crystal fibers: towards high speed reconfigurable transmission platforms, Opt. Express 14 (2006), 901-913.   DOI
34 B. K. Paul et al., Nanoscale GaP strips based photonic crystal fiber with high nonlinearity and high numerical aperture for laser applications, Results Phys. 10 (2018), 374-378.   DOI
35 Y. E. Monfared et al., Selectively toluene-filled photonic crystal fiber Sagnac interferometer for temperature sensing applications, Results Phys. 13 (2019), 1-6.
36 Y. E. Monfared and S. A. Ponomarenko, Highly nonlinear liquid-filled photonic crystal fibers, in Proc. Photon, North (PN), Ottawa, Canada, June, 2015, p. 1.
37 Y. E. Monfared and S. A. Ponomarenko, Slow light generation in liquid-filled photonic crystal fibers via stimulated Brillouin scattering, Optik. Int. J. Light Electron Opt. 127 (2016), 5800-5805.   DOI
38 H. Ademgil and S. Haxha, Highly birefringent photonic crystal fibers with ultralow chromatic dispersion and low confinement losses, J. Lightwave Techonol. 26 (2008), 441-448.   DOI
39 J. Liao and T. Huang, Highly nonlinear photonic crystal fiber with ultrahigh birefringence using a nano-scale slot core, Opt. Fiber Technol. 22 (2015), 107-112.   DOI
40 K. M. Gundu, M. Kolesik, and J. V. Moloney, Ultra-flatteneddispersion selectively liquid-filled photonic crystal fiber, Opt. Express 14 (2006), 6870-6878.   DOI
41 M. A. Hossain, Y. Namihira, and M. A. Islam, Polarization maintaining highly nonlinear photonic crystal fiber for supercontinuum generation at 1.55${\mu}m$, Opt. Laser Technol. 44 (2012), 1261-1269.   DOI
42 W. Wang et al., Characteristics analysis of high birefringence and two zero dispersion points photonic crystal fiber with octagonal lattices, Acta Phy. Sin. 61 (2012), 144601-144607.   DOI
43 J. M. Dudely and J. R. Tylor, Supercontinuum generation in optical fibers, Cambridge University Press, Cambridge, UK, 2010.
44 J. D. Joannopoulos et al., Photonic Crystal Fiber: Molding the Flow of Light, 2nd ed, Princeton University Press, Princeton, NJ, 2008.
45 K. Thyagarajan et al., A novel design of a dispersion compensating fiber, IEEE photon. Technol. Lett. 8 (1996), 1510-1512.   DOI
46 G. Agrawal, Nonlinear Fiber Optics, 2nd ed, Academic Press, New York, NY, 1995.
47 P. Kumar, K. F. Fiaboe, and J. S. Roy, Highly birefringent do-octagonal photonic crystal fibers with ultra-flattened zero dispersion for supercontinuum generation, J. Microwaves, Optoelectron. Electromagn. Applicat. 18 (2019), no. 1, 80-95.   DOI
48 M. S. Islam et al., Porous core photonic crystal for ultra-low material loss in terahertz regime, IET Commun. 10 (2018), no. 16, 1-5.
49 T. M. Monmor et al., Modelling large air fraction holey optical fibers, J. Lightwave Technol. 18 (2000), 50-54.   DOI
50 N. M. Dragomir et al., Refractive index profiling of optical fibers using differential interference contrast microscopy, IEEE Photon. Technol. Lett. 17 (2005), 2149-2151.   DOI
51 B. Zsigri, J. Laegsgaard, and A. Bjarklev, A novel photonic crystal fiber design for dispersion compensation, J. Opt. A: Pure Appl. Opt. 6 (2004), 717.   DOI
52 W. H. Reeves et al., Demonstration of ultra-flattened dispersion in photonic crystal fibers, Opt. Express 10 (2002), 609-613.   DOI
53 A. Cucinotta et al., Amplification properties of Er3+-doped photonic crystal fibers, J Lightwave Technol. 21 (2003), 782-788.   DOI
54 J. Fu et al., Experimental study on all Yb-doped photonic crystal fiber laser, in Proc. SPIE, Fiber Lasers XIV: Technol. Syst. San Francisco, CA, USA, 2017, 100832H:1-8.
55 A. Medjouri et al., Design of a circular photonic crystal fiber with flattened chromatic dispersion using a defected core and selectively reduced air holes: Application to supercontinuum generation at 1.55${\mu}m$, Photon. Nanostruc. Funda. Appl. 16 (2015), 43-50.   DOI
56 J. Wang et al., Properties of index guided PCF with air core, Opt. Laser Tech. 39 (2006), 317-321.   DOI
57 J. C. Knight et al., Photonic band gap guidance in optical fibers, Sci. 282 (1998), 1476-1478.   DOI
58 P. J. Roberts et al., Control of dispersion in photonic crystal fiber, J. Opt. Fiber. Commun. Rep. 2 (2005), 435-461.   DOI
59 Y. S. Lee et al., Diamond unit cell photonic crystal fiber with high birefringence and low confinement loss based on circular air holes, Appl. Opt. 54 (2015), no. 20, 6140-6145.   DOI
60 Y. Ni et al., Dual-core photonic crystal fiber for dispersion compensation, IEEE Photon. Technol. Lett. 16 (2004), 1516-1518.   DOI
61 G. Stepniewski et al., Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm, Laser Phy. Lett. 11 (2017), no. 5, article no. 55103.
62 S. K. Biswas et al., A modified design of a hexagonal circular photonic crystal fiber with large negative dispersion properties and ultrahigh birefringence for optical broadband communication, Photon. 6 (2019), 1-14.
63 J. C. Knight and J. Russell, Applied optics: New ways to guide light, Sci. 296 (2002), 276-277.   DOI
64 S. Biswas et al., Design of an ultrahigh birefringence photonic crystal fiber with large nonlinearity using all circular air holes for a fiber-optic transmission system, Photon. 5 (2018), 1-11.   DOI
65 A. Marandi et al., Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 ${\mu}m$, Opt. Express 20 (2012), no. 22, 24218-24225.   DOI
66 Y. Sun et al., Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white light laser, J. Biomed. Opt. 14 (2009), 054009-054011.   DOI
67 H. Saghaei et al., Ultra-wide mid-infrared supercontinuum generation in Αs40Se60 chalcogenide fibers: solid core PCF versus SIF, selected topics in quantum electronics, IEEE J. 22 (2016), no. 2, 1-8.
68 H. Saghaei, M. Ebnali-Heidari, and M. K. Moravvej-Farshi, Midinfrared supercontinuum generation via $As_2$ $Se_3$ chalcogenide photonic crystal fibers, Appl. Opt. 54 (2015), no. 8, 2072-2079.   DOI
69 F. Begum et al., Supercontinuum generation in square photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion and fabrication tolerance analysis, Opt. Commun. 284 (2011), no. 4, 965-970.   DOI
70 H. Saghaei et al., Novel approach to adjust the step size for closedloop power control in wireless cellular code division multiple access systems under flat fading, IET Commun. 5 (2011), no. 11, 1469-1483.   DOI
71 K. Saitoh et al., Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion, Opt. Express 11 (2003), no. 8, 843-852.   DOI
72 W. J. Wadsworth et al., Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source, JOSA B 19 (2002), no. 9, 2148-2155.   DOI
73 S. Wang et al., Selective filling of photonic crystal fibers using focused ion beam milled microchannels, Opt. Express 19 (2011), no. 18, 17585-17590.   DOI
74 G. D. Kirishna et al., Analysis of zero dispersion shift and supercontinuum generation near IR in circular photonic crystal fibers, Optik 145 (2017), 599-607.   DOI
75 Z. Xing-Ping et al., High stability supercontinuum generation in lead silicate SF57 photonic crystal fibers, Chin. Phys. B 22 (2013), 1-4.
76 M. L. Ferhat, L. Cherbi, and I. Haddouche, Supercontinnum generation in silica photonic crystal fiber at 1.3${\mu}m$ and 1.65${\mu}m$ wavelength for optical coherence tomography, Optik 152 (2018), 106-115.   DOI
77 M. Sharma, S. Konar, and R. K. Khan, Supercontinuum generation in highly nonlinear hexagonal photonic crystal fiber at very low power, J. Nanophoton. 9 (2015), 1-8.