• 제목/요약/키워드: Zebrafish larvae

검색결과 29건 처리시간 0.026초

Anti-melanogenic Activity of Extracts from Carex pumila Thunb. Inhabiting Along the Nakdong River (Republic of Korea)

  • Mirissa Hewage Dumindu Kavinda;Mi-Hwa Lee;Chang-Hee Kang;Yung Hyun Choi;Gi-Young Kim
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2022년도 추계학술대회
    • /
    • pp.118-118
    • /
    • 2022
  • Carex pumila Thunb. is a plant native to East Asia, Australia, and New Zealand. However, its effect on skin melanogenesis has not been investigated. In the present study, we evaluated its anti-melanogenic properties using B16F10 melanoma cells and zebrafish larvae in the presence or absence of α-melanocyte stimulating hormone (α-MSH). In this study we revealed that concentrations below 50 µg/mL did not induce any cytotoxicity in B16F10 melanoma cells and cardiotoxicity in zebrafish larvae. However, 50 µg/mL treatment significantly inhibited α-MSH-induced extracellular (from 181.24% α 0.62% to 105.15% α 0.31%) and intracellular melanin contents (from 119.8% α 1.2% to 53.4% α 1.7%) as well as intracellular tyrosinase activity (from 143.9% α 4.2% to 103.7% α 1.4%) in B16F10 melanoma cells. At 25 µg/mL and 50 µg/mL concentrations, it could significantly inhibit α-MSH induced hyperpigmentation in zebrafish larvae (from 100% α 2.3% to 60.7% α 1.3% and 47.5% α 1.9% respectively). Additionally, the extract suppressed α-MSH-induced cAMP-CREB-MITF signaling pathway and consequently inhibited tyrosinase expression in B16F10 melanoma cells. In conclusion, our results indicate that this plant extract could suppress the cAMP-CREB-MITF axis which consequently inhibits tyrosinase mediated melanogenesis.

  • PDF

제브라피쉬(Danio rerio)를 이용한 비소 고함류 3종 해조류 추출물의 급성 독성평가 (Acute Toxicity Assessment in Zebrafish Danio rerio of Arsenic-rich Extracts from Three Species of Seaweeds)

  • 양혜원;김은아;김서영;전유진
    • 한국수산과학회지
    • /
    • 제51권1호
    • /
    • pp.31-41
    • /
    • 2018
  • Seaweeds are composed of a variety of bioactive substances, including polysaccharides, pigments, minerals, peptides, and polyphenols. Among these substances, the arsenic content of seaweeds has been a significant cause for concern. The present study evaluated the toxicity of arsenic from three species of seaweed using a zebrafish Danio rerio model. The arsenic-rich extracts were obtained from Ecklonia cava (ECAE), Undaria pinnatifida (UPAE) and Hizikia fusiformis (HFAE) using a solvent of 50% methanol and 1% $HNO_3$. We investigated the toxicity of the arsenic-rich extracts in zebrafish embryos through survival rate, heart rate, yolk sac edema size, cell death, reactive oxygen species (ROS) production and real-time polymerase chain reaction (PCR). The hepatotoxicity of arsenic-rich extracts was assessed in the liver of adult zebrafish through real-time PCR and histopathology. The survival rates of embryos and adult zebrafish showed no significant changes at any concentration. At 100 ppm, embryos did not exhibit significant differences in heart rate, yolk sac edema size, cell death or ROS production. In addition, apoptosis-related genes in larvae and liver tissue were unaffected by treatment with arsenic-rich extracts. These data will help clarify that developmental changes, hepatic oxidative stress, and apoptosis are not associated with toxicity from arsenic-rich seaweed extracts in a zebrafish model.

Activation of Nrf2 by sulfuretin stimulates chondrocyte differentiation and increases bone lengths in zebrafish

  • Seo-Hyuk Chang;Hoi-Khoanh Giong;Da-Young Kim;Suji Kim;Seungjun Oh;Ui Jeong Yun;Jeong-Soo Lee;Kye Won Park
    • BMB Reports
    • /
    • 제56권9호
    • /
    • pp.496-501
    • /
    • 2023
  • Elongation of most bones occur at the growth plate through endochondral ossification in postnatal mammals. The maturation of chondrocyte is a crucial factor in longitudinal bone growth, which is regulated by a complex network of paracrine and endocrine signaling pathways. Here, we show that a phytochemical sulfuretin can stimulate hypertrophic chondrocyte differentiation in vitro and in vivo. We found that sulfuretin stabilized nuclear factor (erythroid-derived 2)-like 2 (Nrf2), stimulated its transcriptional activity, and induced expression of its target genes. Sulfuretin treatment resulted in an increase in body length of zebrafish larvae and induced the expression of chondrocyte markers. Consistently, a clinically available Nrf2 activator, dimethyl fumarate (DMF), induced the expression of hypertrophic chondrocyte markers and increased the body length of zebrafish. Importantly, we found that chondrocyte gene expression in cell culture and skeletal growth in zebrafish stimulated by sulfuretin were significantly abrogated by Nrf2 depletion, suggesting that such stimulatory effects of sulfuretin were dependent on Nrf2, at least in part. Taken together, these data show that sulfuretin has a potential use as supporting ingredients for enhancing bone growth.

Larvicidal potency of selected xerophytic plant extracts on Culex pipiens (Diptera: Culicidae)

  • ABUTAHA, Nael;AL-MEKHLAFI, Fahd A.;AL-KERIDIS, Lamya Ahmed;FAROOQ, Muhammad;NASR, Fahd A.;AL-WADAAN, Muhammad
    • Entomological Research
    • /
    • 제48권5호
    • /
    • pp.362-371
    • /
    • 2018
  • Chemical insecticides released into the environment may have adverse biological effects. Therefore, there is a need for ecofriendly insecticides for mosquito control. Xerophytic plant extracts that may provide more ecofriendly active component were evaluated against Culex pipiens 4th instars. Plant extracts prepared using different solvents with a Soxhlet apparatus and different concentrations were tested against Culex pipiens larvae. The effects were observed at 24 h and 72 h intervals and $LD_{50}$ and $LD_{90}$ values determined. Chloroform ($CHCl_3$) and ethyl acetate (EtOAc) extracts of Althaea ludwigii were the most effective against Cx. pipiens $4^{th}$ instars, but were highly dependent on extract concentrations and exposure time. Results suggest that A. ludwigii extracts contain bioactive compounds, such as phenols and saponins, that may provide effective Cx. pipienslarval control. However, the extract was found to be toxic to zebrafish larvae, and may be toxic to other aquatic fauna. Further studies to determine the active components and toxicity to other fauna are needed.

Leopard danio 반문의 유전 양상과 생존율에 미치는 영향 (Genetic Analysis of Pigmentation Pattern in the Leopard Danio)

  • 이병문;강거영;송춘복
    • 한국양식학회지
    • /
    • 제11권3호
    • /
    • pp.353-361
    • /
    • 1998
  • Zebra danio와 leopard danio의 부모세대(Po)간의 상반교재를 병행한 교배실험에서 5개체의 small spotted type이 출현한 1개의 실험구를 제외하고는 모두 wild type으로 나타났다. 그리고 F하(1)세대 간의 상반교배로 태어난 F하(2)세대는 wild type과 spotted type의 비율이 모두 3 : 1로 나타났다. F하(1)세대와 Po세대와의 상반교배를 병행한 역교배실험에서는 부모세대를 zebra danio로 사용한 경우, wild type과 spotted type이 178 : 1, 2.7 : 1, 3.9 : 1로 출현하는 실험구를 제외하고는 모두 wild type으로 나타났고, spotted type을 사용한 역교배 및 검정교배실험에서 40개체의 small spotted type으로 출현하는 실험구를 제외하고는 모두 1 : 1의 비율을 나타내었다. Z x F(LZ) 교재실험구 중 두 개의 반복구(각각 2.7 : 1, 3.9 : 1 )에서 wild type과 spotted type의 비율이 3 : 1로 나타났으나, F하(1)세대간의 교배실험과 검정교배실험 결과, zebra danio 암컷이 이형접합자(Pp)였다고 추정되었다. Spotted type과 small spotted type으로 나타나는 예외적인 결과에 대해 아직까지 확실히 규명되지 않았지만, 모든 결과를 종합해 볼 때 반문을 조절하는 유전자의 인자형은 zebra danio가 동형 우성 (PP)이고, leopard danio가 동형 열성(pp)이며, 유전자는 상염색체 상에 존재한다는 것을 알 수 있었다. 수정 후부터 15일째까지의 생존율 비교 실험에서 $Z{\times}Z$ (83.8${\pm}$6.7%)와 $L{\times}L$(80.6${\pm}$4.8%)는 생존율에 있어서 그 차이가 통계적으로 유의하지 않았으며, 이들과 다른 교배군인 $Z{\times}L$(73.2${\pm}$2.0%) 이나 $L{\times}Z$(70.6${\pm}$4.2%) 와는 유의차를 보였다. 따라서 D. frankei로 알려졌던 leopard danio는 zebrafish의 aquarium morph인 반문 돌연변이체이지만 leopard danio 사이에 교배가 이루어질 경우에는 유전적으로 안정되어 있음을 알 수 있는 반면에, wild type zebrafish와는 다소의 유전적인 부조화가 존재한다고 추정된다.

  • PDF

옥덩굴 에탄올 추출물의 당 대사 및 인슐린 민감성 개선효과 (Caulerpa okamurae ethanol extract improves the glucose metabolism and insulin sensitivity in vitro and in vivo)

  • 박철민;타쿠리랙스미센;류동영
    • Journal of Applied Biological Chemistry
    • /
    • 제64권1호
    • /
    • pp.89-96
    • /
    • 2021
  • 이 연구의 목적은 Caulerpa okamurae 에탄올 추출물(COE)이 제2형 당뇨병 치료의 약물 표적 중 하나인 당 대사 및 인슐린 민감성에 미치는 영향을 평가하는 것이다. COE는 in vitro 실험에서 단백질 티로신 포스타제 1B (PTP1B)와 디펩티딜 펩티데이즈-IV (DPP-IV) 효소 활성을 유의하게 억제시켰다. 또한, COE는 3T3-L1 지방세포와 제브라피쉬에서 당 흡수, 인슐린 수용체 기질(IRS-1) 및 당 수송체(GLUT4) 단백의 발현을 대조군에 비해 유의하게 향상시켰다. L6 근육세포의 덱사메타손(dexamethasone)으로 유도된 인슐린 저항성 모델에서도 COE는 인슐린 신호전달 및 당 흡수 단백의 발현을 효과적으로 증가시켰다. 더불어 인슐린 저항성 지표로 알려진 IRS-1 Ser307의 인산화 활성도 COE 첨가에 의해 유의하게 억제되었다. 그러나 COE는 췌장 베타세포의 인슐린 분비에는 아무런 영향을 미치지 않았다. 결론적으로 COE는 인슐린 표적세포와 제브라피쉬에서 인슐린 신호전달과 당 수송체 GLUT4 단백 발현의 조절을 통해 당 대사 및 인슐린 민감성을 개선시키는 것으로 밝혀졌다.

The Evaluation on the Effectiveness as a Cosmetic Material of Ascidian shell Extract Using Zebrafish model

  • Park, Sin-Ho;Kim, Bo-Ae;Yang, Jae-Chan
    • 한국응용과학기술학회지
    • /
    • 제36권1호
    • /
    • pp.258-268
    • /
    • 2019
  • The extracts of AS contain in alloxanthin, halocynthiaxanthin, astaxanthin and 13 kinds of carotenoids. The aim of the study was to assess the anti-oxidant activity and cell viability of AS. The anti-oxidant activity was determined by using DPPH radical inhibition activity and superoxide dismutase (SOD)-like activity. The results of cell viability assay showed that the extracts from AS were cytotoxic at concentrations above $5.0mg/m{\ell}$. This study was designed to examine inflammation induced by LPS, protection effect by UVB and the toxicity of Ascidian shell extract(ASE) as a functional cosmetic ingredient. Evaluation of embryo toxicity resulted in embryo coagulation and mortality when treated at 5.0, 10.0, $20.0mg/m{\ell}$. At the lowest concentration of $1.0mg/m{\ell}$, hatchability resulted in 100.0 % rate. The results of arrhythmia measurement in larvae showed similarity to the evaluation of embryo toxicity. This result demonstrated that toxicity is present at concentrations greater than $5.0mg/m{\ell}$. The protective effect of ASE on LPS and UVB-induced in the zebrafish was investigated. Intracellular reactive oxygen species(ROS) generated by the exposure of zebrafish to LPS, UVB-radiation were significantly decreased after treatment with ASE at $0.1mg/m{\ell}$. As a result, ASE similarly reduced UVB-induced ROS generation and cell death in live zebrafsih. Therefore, it is suggested that ASE has anti-Inflammatory effects and can possibly be used as a functional substance for skin protection in the future.

Embryonic Zebrafish Model - A Well-Established Method for Rapidly Assessing the Toxicity of Homeopathic Drugs - Toxicity Evaluation of Homeopathic Drugs Using Zebrafish Embryo Model -

  • Gupta, Himanshu R;Patil, Yogesh;Singh, Dipty;Thakur, Mansee
    • 대한약침학회지
    • /
    • 제19권4호
    • /
    • pp.319-328
    • /
    • 2016
  • Objectives: Advancements in nanotechnology have led to nanoparticle (NP) use in various fields of medicine. Although the potential of NPs is promising, the lack of documented evidence on the toxicological effects of NPs is concerning. A few studies have documented that homeopathy uses NPs. Unfortunately, very few sound scientific studies have explored the toxic effects of homeopathic drugs. Citing this lack of high-quality scientific evidence, regulatory agencies have been reluctant to endorse homeopathic treatment as an alternative or adjunct treatment. This study aimed to enhance our insight into the impact of commercially-available homeopathic drugs, to study the presence of NPs in those drugs and any deleterious effects they might have, and to determine the distribution pattern of NPs in zebrafish embryos (Danio rerio). Methods: Homeopathic dilutions were studied using high-resolution transmission electron microscopy with selected area electron diffraction (SAED). For the toxicity assessment on Zebrafish, embryos were exposed to a test solution from 4 - 6 hours post-fertilization, and embryos/larvae were assessed up to 5 days post-fertilization (dpf ) for viability and morphology. Toxicity was recorded in terms of mortality, hatching delay, phenotypic defects and metal accumulation. Around 5 dpf was found to be the optimum developmental stage for evaluation. Results: The present study aimed to conclusively prove the presence of NPs in all high dilutions of homeopathic drugs. Embryonic zebrafish were exposed to three homeopathic drugs with two potencies (30CH, 200CH) during early embryogenesis. The resulting morphological and cellular responses were observed. Exposure to these potencies produced no visibly significant malformations, pericardial edema, and mortality and no necrotic and apoptotic cellular death. Conclusion: Our findings clearly demonstrate that no toxic effects were observed for these three homeopathic drugs at the potencies and exposure times used in this study. The embryonic zebrafish model is recommended as a well-established method for rapidly assessing the toxicity of homeopathic drugs.

Fasiglifam (TAK-875), a G Protein-Coupled Receptor 40 (GPR40) Agonist, May Induce Hepatotoxicity through Reactive Oxygen Species Generation in a GPR40-Dependent Manner

  • Kim, MinJeong;Gu, Gyo Jeong;Koh, Yun-Sook;Lee, Su-Hyun;Na, Yi Rang;Seok, Seung Hyeok;Lim, Kyung-Min
    • Biomolecules & Therapeutics
    • /
    • 제26권6호
    • /
    • pp.599-607
    • /
    • 2018
  • Fasiglifam (TAK-875) a G-protein coupled receptor 40 (GPR40) agonist, significantly improves hyperglycemia without hypoglycemia and weight gain, the major side effects of conventional anti-diabetics. Unfortunately, during multi-center Phase 3 clinical trials, unexpected liver toxicity resulted in premature termination of its development. Here, we investigated whether TAK-875 directly inflicts toxicity on hepatocytes and explored its underlying mechanism of toxicity. TAK-875 decreased viability of 2D and 3D cultures of HepG2, a human hepatocarcinoma cell line, in concentration-(>$50{\mu}M$) and time-dependent manners, both of which corresponded with ROS generation. An antioxidant, N-acetylcysteine, attenuated TAK-875-mediated hepatotoxicity, which confirmed the role of ROS generation. Of note, knockdown of GPR40 using siRNA abolished the hepatotoxicity of TAK-875 and attenuated ROS generation. In contrast, TAK-875 induced no cytotoxicity in fibroblasts up to $500{\mu}M$. Supporting the hepatotoxic potential of TAK-875, exposure to TAK-875 resulted in increased mortality of zebrafish larvae at$25{\mu}M$. Histopathological examination of zebrafish exposed to TAK-875 revealed severe hepatotoxicity as manifested by degenerated hypertrophic hepatocytes with cytoplasmic vacuolation and acentric nuclei, confirming that TAK-875 may induce direct hepatotoxicity and that ROS generation may be involved in a GPR40-dependent manner.

Promotion of Remyelination by Sulfasalazine in a Transgenic Zebrafish Model of Demyelination

  • Kim, Suhyun;Lee, Yun-Il;Chang, Ki-Young;Lee, Dong-Won;Cho, Sung Chun;Ha, Young Wan;Na, Ji Eun;Rhyu, Im Joo;Park, Sang Chul;Park, Hae-Chul
    • Molecules and Cells
    • /
    • 제38권11호
    • /
    • pp.1013-1021
    • /
    • 2015
  • Most of the axons in the vertebrate nervous system are surrounded by a lipid-rich membrane called myelin, which promotes rapid conduction of nerve impulses and protects the axon from being damaged. Multiple sclerosis (MS) is a chronic demyelinating disease of the CNS characterized by infiltration of immune cells and progressive damage to myelin and axons. One potential way to treat MS is to enhance the endogenous remyelination process, but at present there are no available treatments to promote remyelination in patients with demyelinating diseases. Sulfasalazine is an anti-inflammatory and immune-modulating drug that is used in rheumatology and inflammatory bowel disease. Its anti-inflammatory and immunomodulatory properties prompted us to test the ability of sulfasalazine to promote remyelination. In this study, we found that sulfasalazine promotes remyelination in the CNS of a transgenic zebrafish model of NTR/MTZ-induced demyelination. We also found that sulfasalazine treatment reduced the number of macrophages/microglia in the CNS of demyelinated zebrafish larvae, suggesting that the acceleration of remyelination is mediated by the immunomodulatory function of sulfasalazine. Our data suggest that temporal modulation of the immune response by sulfasalazine can be used to overcome MS by enhancing myelin repair and remyelination in the CNS.