Browse > Article
http://dx.doi.org/10.3839/jabc.2021.014

Caulerpa okamurae ethanol extract improves the glucose metabolism and insulin sensitivity in vitro and in vivo  

Park, Chul-Min (Department of Nutraceutical Resources and Institute of Korean Medicine Industry, Mokpo National University)
Thakuri, Laxmi Sen (Department of Nutraceutical Resources and Institute of Korean Medicine Industry, Mokpo National University)
Rhyu, Dong-Young (Department of Nutraceutical Resources and Institute of Korean Medicine Industry, Mokpo National University)
Publication Information
Journal of Applied Biological Chemistry / v.64, no.1, 2021 , pp. 89-96 More about this Journal
Abstract
The aim of this study is to examine the effect of Caulerpa okamurae ethanol extract (COE) on glucose metabolism and insulin sensitivity as one of the drug targets for treatment of type2 diabetes. COE significantly inhibited protein tyrosine phosphatase (PTP1B) and dipeptidyl peptidase-IV (DPP-IV) enzyme activities in vitro assay. Also, COE significantly enhanced the glucose uptake and the expression of insulin receptor substrate-1 (IRS-1) and glucose transporter4 (GLUT4) proteins in 3T3-L1 adipocytes or zebrafish larvae compared with control. In dexamethasone-induced resistance model of L6 myotubes, the protein expression of insulin signaling and glucose uptake was effectively increased by the treatment of COE. In contrast, the elevated phosphorylation of IRS-1 Ser307 was normally suppressed by treatment of COE. However, COE had no effect on insulin secretion in pancreatic beta cells. Thus, our results suggest that COE improves the glucose metabolism and insulin sensitivity through the regulation of insulin signaling and GLUT4 protein in insulin's target cells and zebrafish larvae.
Keywords
Caulerpa okamurae; Insulin sensitivity; L6 myotubes; 3T3-L1 adipocytes; Type2 diabetes; Zebrafish larvae;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tabassum N, Tai H, Jung DW, Williams DR (2015) Fishing for nature's hits: establishment of the zebrafish as a model for screening antidiabetic natural products. Evid Based Complement and Alternat Med doi:10.1155/2015/287847   DOI
2 Zang L, Maddison LA, Chen W (2018) Zebrafish as a model for obesity and diabetes. Fron Cell Dev Biol 6: doi.org/10.3389/fcell.2018.00091   DOI
3 Abdul-Ghani, MA, DeFronzo, RA (2010) Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol 2010: 476279
4 Czech, MP (2017) Insulin action and resistance in obesity and type 2 diabetes. Nat Med 23(7): 804   DOI
5 Carneiro JG, Rodrigues JAG, de Sousa Oliveira Vanderlei E, Souza RB, Quindere ALG, Coura CO, de Araujo IWF, Chaves HV, Bezerra MM, Benevides NMB (2014) Peripheral Antinociception and Anti-Inflammatory Effects of Sulphated Polysaccharides from the Alga Caulerpa mexicana. Basic Clin Pharmacol Toxicol 115(4): 335-342   DOI
6 Sharma BR, Kim HJ, Rhyu DY (2015) Caulerpa lentillifera extract ameliorates insulin resistance and regulates glucose metabolism in C57BL/KsJ-db/db mice via PI3K/AKT signaling pathway in myocytes. J Transl Med 13(1): 1-10   DOI
7 Sharma BR, Kim HJ, Kim MS, Park CM, Rhyu DY (2017) Caulerpa okamurae extract inhibits adipogenesis in 3T3-L1 adipocytes and prevents high-fat diet-induced obesity in C57BL/6 mice. Nutr Res 47: 44-52   DOI
8 Oguntibeju OO (2019) Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol 11(3): 45-63
9 Olokoba AB, Obateru OA, Olokoba LB (2012) Type 2 diabetes mellitus: a review of current trends. Oman Med J 27(4): 269-273   DOI
10 Lee YS, Jun HS (2014) Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism 63(1): 9-19   DOI
11 Ramnanan CJ, Edgerton DS, Kraft G, Cherrington AD (2011) Physiologic action of glucagon on liver glucose metabolism. Diabetes Obes Metab 13: 118-125
12 Kasuga M (2006) Insulin resistance and pancreatic β cell failure. J Clin Invest 116(7): 1756-1760   DOI
13 Leibiger IB, Leibiger B, Berggren PO (2008) Insulin signaling in the pancreatic β-cell. Annu Rev Nutr 28: 233-251   DOI
14 Cerf ME (2013) Beta cell dysfunction and insulin resistance. Front Endocrinol. doi: 10.3389/fendo.2013.00037   DOI
15 Cha BS, Park SE (2006) Insulin resistance and PPARγ. J Korean Diabetes Assoc 30(5): 317-323   DOI
16 Maratou E, Raptis SA (2011) Insulin effects in muscle and adipose tissue. Diabetes Res Clin Pract 93: S52-S59   DOI
17 Dey L, Attele AS, Yuan CS (2002) Alternative therapies for type 2 diabetes. Alternative Medicine Review 7(1): 45-58
18 Hollander P (2007) Anti-diabetes and anti-obesity medications: effects on weight in people with diabetes. Diabetes Spectr 20(3): 159-165   DOI
19 Gallwitz B (2019) Clinical use of DPP-4 inhibitors. Front Endocrinol. doi: 10.3389/fendo.2019.00389   DOI
20 Prabhakar PK, Doble M (2011) Mechanism of action of natural products used in the treatment of diabetes mellitus. Chin J Integr Med 17(8): 563-574   DOI
21 Choi CG, Hwang EK, Sohn GH (2000) Culture studies on the green alga, Caulerpa Okamurae I. growth and regeneration. J Aquaculture 13(3): 253-258
22 Nguyen VT, Ueng JP, Tsai GJ (2011) Proximate composition, total phenolic content, and antioxidant activity of seagrape (Caulerpa lentillifera). J Food Sci 76(7): C950-C958   DOI
23 Beale, EG (2013) Insulin signaling and insulin resistance. J Investig Med 61(1): 11-14   DOI
24 Vanderlei ESO, Patoilo KKNR, Lima NA, Lima APS, Rodrigues JAG, Silva LMC, Lima MEP, Lima V, Benevides NMB (2010) Antinociceptive and anti-inflammatory activities of lectin from the marine green alga Caulerpa cupressoides. Int immunopharmacol 10(9): 1113-1118   DOI
25 Lee YS, Jun HS (2014) Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism 63(1): 9-19   DOI
26 Park YS, Ahn SH, Park DJ, Kim HH (2014) Effects of metabolic surgery on glucose homeostasis in type 2 diabetes. J Metab Bariatr Surg 3(2): 25-32
27 Mo, Z, Li, L, Yu, H, Wu, Y, Li, H (2019) Coumarins ameliorate diabetogenic action of dexamethasone via Akt activation and AMPK signaling in skeletal muscle. J Pharmacol Sci 139(3): 151-157   DOI
28 Vilsboll T, Holst JJ (2004) Incretins, insulin secretion and type 2 diabetes mellitus. Diabetologia 47(3): 357-366   DOI
29 Zhang S, Zhang ZY (2007) PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug discov today 12(9-10): 373-381   DOI
30 Sun J, Qu C, Wang Y, Huang H, Zhang M, Li H, Zhang Y, Wang Y, Zou W (2016) PTP1B, a potential target of type 2 diabetes mellitu. Mol Biol. doi: 10.3389/fnagi.2017.00007   DOI
31 Buchanan TA (2003) Pancreatic beta-cell loss and preservation in type 2 diabetes. Clin Ther 25: B32-B46   DOI
32 Hamm JK, Park BH, Farmer SR (2001) A role for C/EBPβ in regulating peroxisome proliferator-activated receptor γ activity during adipogenesis in 3T3-L1 preadipocytes. J Biol Chem 276(21): 18464-18471   DOI
33 Kim JB, Park JY (2002) Molecular insights into fat cell differentiation and functional roles of adipocytokines. Endocrinol Metab 17(1): 1-8
34 Kim SH, Shin EJ, Hyun CK (2005) Enhancing effects of extracts of Phellodendri Cortex on glucose uptake in normal and insulin-resistant 3T3-L1 adipocytes. Kor J Pharmacogn 36(4): 291-298