• Title/Summary/Keyword: ZVS Full Bridge Converter

Search Result 138, Processing Time 0.024 seconds

A New ZVS-PWM Full-Bridge Boost Converter

  • Baei, Mohammadjavad;Narimani, Mehdi;Moschopoulos, Gerry
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.237-248
    • /
    • 2014
  • Pulse-width modulated (PWM) full-bridge boost converters are used in applications where the output voltage is considerably higher than the input voltage. Zero-voltage-switching (ZVS) is typically implemented in these converters. A new ZVS-PWM full-bridge converter is proposed in this paper. The proposed converter does not have any of the disadvantages associated with other converters of this type, including a complicated auxiliary circuit, increased current stresses in the main power switches, and load-dependent ZVS operation. The operation of the proposed converter, its steady-state characteristics, and its design are explained and examined. The feasibility of the converter is confirmed with results obtained from an experimental prototype.

Novel ZVS Switching Method of Full-bridge Converter (Full-bridge Converter의 새로운 ZVS 스위칭 기법)

  • Kim, Seung-Ryong;Sun, Han-Geol;Han, Man-Seung;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.477-483
    • /
    • 2011
  • Existing switching system that is one of the ways which are used for DC/DC power converter is classified to hard-switching system and resonant-soft-switching system, generally. Hard-switching system is inefficient because the power loss of the switching element is large when it is been to trun on or turn off. And resonant-soft-switching system have the defect that need to add the another reactor and capacitor that make it expensive and huge. This paper suggest the ZVS Full-Bridge power converter contrcution of novel switching system for the overcoming these shortcomings. In Suggested soft-switching system, the front of buck converter at diode current, switch is changing on and off at the part of full-bridge converter's zero voltage part. as the result that is possible to be ZVS excepting the reactor and capacitor. also to verify the reasonability of the isolated ZVS full-bridge DC/DC converter as previously suggested, we produced the 500[W] level DC/DC converter and enforced the simulation for Psim, and then it able to conform the superiority of the DC/DC converter's efficient.

A Study on the Digital Control of a ZVS-Full Bridge Converter (ZVS-Full Bridge Converter의 디지털 제어에 관한 연구)

  • 최현식;이재학
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.96-102
    • /
    • 1998
  • This paper describes the design of the digital controller for Full-Bridge Phase-shifted converter with zero-voltage switching (ZVS). Although digital control techniques are widely used in the area of inverters and motor drives, their use for the control of high-frequency switching power supply is still rare. Therefore, this paper presents design method of digital controller of Full-Bridge Phase-shifted converter with zero-voltage switching (ZVS) and compares with conventional analog controller. The controller design is optimized by running computer simulation with the MATLAB numerical calculation package.

  • PDF

ZVS Phase Shift Full-Bridge Converter's Small Signal Modeling and Digital Controller Design (ZVS 위상천이 풀브리지 컨버터의 소신호 모델링 및 디지털 제어기 설계)

  • Kim, Jeong-Woo;Cho, Younghoon;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.321-322
    • /
    • 2014
  • In this paper, a zero-voltage switching (ZVS) phase shift full-bridge converter is analyzed. The small-signal model is derived to design a digital controller. PLECS simulation shows how sampling method effects on transfer function of ZVS phase shift full-bridge converter.

  • PDF

The Driving Circuit Design for ZVS Full-Bridge Converter with 1st Order Delay Circuit (1차 지연회로를 사용한 ZVS Full-Bridge 컨버터 구동회로 설계)

  • Cho, Nae-Soo;Choi, Youn-Ho;Yoon, Kyung-Sup;Koo, Bon-Ho;Kwon, Woo-Hyen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.569-574
    • /
    • 2010
  • The full bridge converter have been used for high power system that is needed to switch the big current. So, EMI and stability problem is occurred. The Soft switching method is the solution to solve the above problem, But implementation of soft switching(ZVS: Zero Voltage Switching) is so complicate and expensive because of the DSP MCU and shift circuit. In this paper, we introduce the technical method for driving circuit of ZVS full bridge converter with 1st order delay circuit and logic elements. The realization of this method is so simple and cheap. The effectiveness of the proposed circuit is verified by experimental results.

An Analysis of ZVS Phase-Shift Full-Bridge Converter's Small Signal Model according to Digital Sampling Method (ZVS 위상천이 풀브릿지 컨버터의 디지털 샘플링 기법에 따른 소신호 모델 분석)

  • Kim, Jeong-Woo;Cho, Younghoon;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.167-174
    • /
    • 2015
  • This study describes how digital time delay deteriorates control performance in zero voltage switching (ZVS) phase-shifted full bridge (PSFB) converter. The small-signal model of the ZVS PSFB converter is derived from the buck-converter small-signal model. Digital time delay effects have been considered according to the digital sampling methods. The analysis verifies that digital time delays reduce the stability margin of the converter, and the double sampling technique exhibits better performance than the single sampling technique. Both simulation and experimental results based on 250 W ZVS PSFB confirm the validity of the analyses performed in the study.

A Study on the 300KHz ZVS Full Bridge PWM Converter (300KHz ZVS Full Bridge PWM 컨버터에 관한 연구)

  • 주형준;김의찬;최재동;손승찬;성세진
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.111-115
    • /
    • 1997
  • This Paper is concerned on developing DC-DC converter using ZVS-FB-PWM Converter. The converter output is 28V and regulated by phase shift control methode. MOSFET is used by the main switching device and high frequency transfomer is made for operating at 300㎑ switching frequency. When the load vary widely, converter's ZVS characteristic is expressed by experiment result.

  • PDF

Efficient Control Method of ZVS Full-bridge PWM Converter with Pulse Load Current (펄스형 부하에서 ZVS Full-bridge PWM 컨버터의 효율 증대를 위한 제어 방법)

  • 김정원
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.404-408
    • /
    • 2000
  • The novel control method of ZVS Full-bridge PWM converter with pulse load current is proposed. This new control method can reduce the switching loss of switches during no load condition. Moreover by using feed-forward load current information this method can obtain better transient dynamics compared to the system with only linear feedback control.

  • PDF

ZVS Resonant Energy Unbalance Problem & Solution of ZVS Full-bridge Converter (ZVS Full-bridge 컨버터의 ZVS 공진 에너지 불평형 문제와 해결 방법)

  • Lee Dong-Youn;Lee Il-Oun;Cho Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.364-367
    • /
    • 2001
  • ZVS Full-bridge converter is widely used in medium power level(1-3kW). ZVS can be designed within a limited load range and ZVS failure at light load condition is assumed to be acceptable within the given efficiency and thermal constraints. However, unbalanced ZVS resonant energy caused by dc blocking capacitor may alleviate the switching loss problem at light load condition. ZVS resonant energy is unbalanced by do blocking capacitor. This problem causes loss and heat concentration of a switch leg, In this paper, this problem is analyzed, and a novel control method is proposed to solve the problem.

  • PDF

New Single Stage PFC Full Bridge AC/DC Converter (새로운 방식의 PFC Single Stage Full Bridge AC/DC Converter)

  • 임창섭;권순걸
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.3
    • /
    • pp.70-75
    • /
    • 2002
  • This paper proposes new single stage power factor correction (PFC) full bridge converter. The proposed converter is combined previous ZVS full bridge DC/DC converter with two inductors, two diodes, two magnetic coupling transformer for PFC. This process of power is isolated from the source and also regulate stable DC output voltage in a category. In this topology, the voltage stress of main switches is reduced by zero voltage switching. Moreover, the proposed converter doesn't need active PFC switch and auxiliarly circuits, like control and gating board, so it could decrease the size and cost and increase the efficiency.

  • PDF