• Title/Summary/Keyword: ZIF-8

Search Result 26, Processing Time 0.022 seconds

Gas Permeation Characteristics of PEBAX2533 Membrane Containing PEGDA and ZIF-8 (PEGDA와 ZIF-8을 함유한 PEBAX2533 막의 기체투과 특성)

  • Kim, Sun Hee;Hong, Se Ryeong;Lee, Hyun Kyung
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.46-56
    • /
    • 2020
  • In this study, poly (ether-block-amide) (PEBAX)/poly (ethylene) glycoldiacrylate (PEGDA)/zeolitic imidazolate framework-8 (ZIF-8)-polyethersulfone (PES) composite membranes were prepared. The gas permeation properties of N2 and CO2 were investigated for each composite membrane. First, the gas permeability in the PEBAX/PEGDA-PES composite membrane decreased with increasing PEGDA content for each molecular weight at PEGDA250, PEGDA575, and PEGDA-700 g/mol. The CO2/N2 selectivity showed a constant value and gradually increased with increasing PEGDA content after 30 wt% PEGDA, and PEBAX/PEGDA250 50 wt%-PES prepared by adding PEGDA250 g/mol 50 wt% showed a selectivity of 15.1. This is because as the PEGDA content increases, the number of diacrylate groups increases, and the CO2 affinity due to the ether structure of PEGDA increases. Gas permeation properties according to ZIF-8 were investigated for composite membranes of PEGDA 0 to 30 wt%, with CO2/N2 selectivity almost constant for each molecular weight. The permeability of N2 and CO2 gradually increased with increasing ZIF-8 content, and CO2/N2 selectivity was the highest at 3.4 in PEBAX/PEGDA250 g/mol 30 wt%/ZIF-8 20 wt%-PES composite membrane.

Enhancing CO2/CH4 separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8

  • Li, Wen;Samarasinghe, S.A.S.C.;Bae, Tae-Hyun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.156-163
    • /
    • 2018
  • High-performance mixed-matrix membranes that comprise both zeolitic imidazolate framework-8 (ZIF-8) and graphene oxide (GO) were synthesized with a solution casting technique to realize excellent $CO_2/CH_4$ separation. The incorporation of ZIF-8 nanocrystals alone in ODPA-TMPDA polyimide can be used to significantly enhance $CO_2$ permeability compared with that of pure ODPA-TMPDA. Meanwhile, the addition of a GO nanostack alone in ODPA-TMPDA contributes to improved $CO_2/CH_4$ selectivity. Hence, a composite membrane that contains both fillers displays significant enhancements in $CO_2$ permeability (up to 60%) and $CO_2/CH_4$ selectivity (up to 28%) compared with those of pure polymeric membrane. Furthermore, in contrast to the ZIF-8 mixed-matrix membrane, which showed decreased mechanical stability, it was found that the incorporation of GO could improve the mechanical strength of mixed-matrix membranes. Overall, the synergistic effects of the use of both fillers together are successfully demonstrated in this paper. Such significant improvements in the mixed-matrix membrane's $CO_2/CH_4$ separation performance and mechanical strength suggest a feasible and effective approach for potential biogas upgrading and natural gas purification.

Bimetallic Co/Zn-ZIF as an Efficient Photocatalyst for Degradation of Indigo Carmine

  • Nguyen, Thanh Nhan;Nguyen, Hoang Phuc;Kim, Tae-Ho;Lee, Soo Wohn
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.68-74
    • /
    • 2018
  • Cobalt-incorporated zeolitic imidazolate framework ZIF-8 was synthesized by a simple one-pot synthesis method at room temperature. Powder X-ray diffraction patterns and energy dispersive X-ray spectrum confirmed the formation of the bimetallic Co/Zn-ZIF structure. UV-Vis diffuse reflectance spectra revealed that the bimetallic ZIF had a lower HOMO-LUMO gap compared with ZIF-8 due to the charge transfer process from organic ligands to cobalt centers. A hydrolytic stability test showed that Co/Zn-ZIF is very robust in aqueous solution - the most important criterion for any material to be applied in photodegradation. The photocatalytic efficiency of the synthesized samples was investigated over the Indigo Carmine (IC) dye degradation under solar simulated irradiation. Cobalt incorporated ZIF-8 exhibited high efficiency over a wide range of pH and initial concentration. The degradation followed through three distinct stages: a slow initial stage, followed by an accelerated stage and completed with a decelerated stage. Moreover, the photocatalytic performance of the synthesized samples was highly improved in alkaline environment rather than in acidic or neutral environments, which may have been because in high pH medium, the increased concentration of hydroxyl ion facilitated the formation of hydroxyl radicals, a reactive species responsible for the breaking of the Indigo Carmine structure. Thus, Co/Zn-ZIF is a promising and green material for solving the environmental pollution caused by textile industries.

Implementation of magnetic Fe3O4@ZIF-8 nanocomposite to activate sodium percarbonate for highly effective degradation of organic compound in aqueous solution

  • Sajjadi, Saeed;Khataee, Alireza;Soltani, Reza Darvishi Cheshmeh;Bagheri, Nafiseh;Karimi, Afzal;Azar, Amirali Ebadi Fard
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.406-415
    • /
    • 2018
  • Here, as-synthesized $Fe_3O_4$ nanoparticles were incorporated into the zeolitic imidazolate framework (ZIF-8) lattice to activate sodium percarbonate (SPC) for degradation of methylene blue (MB). The reaction rate constant of $Fe_3O_4@ZIF-8/SPC$ process ($0.0632min^{-1}$) at acidic conditions (pH = 3) was more than six times that of the $Fe_3O_4/SPC$ system ($0.009min^{-1}$). Decreasing the solute concentration, along with increasing SPC concentration and $Fe_3O_4@ZIF-8$ nanocomposite (NC) dosage, favored the catalytic degradation of MB. The $Fe_3O_4@ZIF-8$ NC after fifteen consecutive treatment processes showed the excellent stability with a negligible drop in the efficiency of the system (<10%). The reaction pathway was obtained via GC-MS analysis.

Highly-permeable Mixed Matrix Membranes Based on SBS-g-POEM Copolymer, ZIF-8 and Ionic Liquid (SBS-g-POEM 공중합체, ZIF-8, 이온성 액체에 기반한 고투과성 혼합 매질 분리막)

  • Kang, Dong A;Kim, Kihoon;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.44-50
    • /
    • 2019
  • In this paper, we developed mixed matrix membranes (MMMs) consisting of SBS-g-POEM block-graft copolymer, ionic liquid (EMIMTFSI) and ZIF-8 nanoparticles to separate a $CO_2/N_2$ gas pair. The SBS-g-POEM is a rubbery block-graft copolymer synthesized through low-cost free-radical polymerization. The EMIMTFSI was dissolved into the SBS-g-POEM matrix and solution synthesized ZIF-8 nanoparticles were also dispersed into the copolymer matrix. The physico-chemical properties of manufactured membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray diffraction (XRD), which showed that the components were compatible with each other. The gas separation performance was confirmed by time-lag measurements showing $CO_2$ permeability of 537.0 barrer and $CO_2/N_2$ selectivity of 15.2. The result represents the EMIMTFSI and ZIF-8 nanoparticles improves the gas permeability more than two-times, without significantly sacrificing the $CO_2/N_2$ selectivity.

Zn/Co ZIF derived synthesis of Co-doped ZnO nanoparticles and application as high-performance trimethylamine sensors (Co가 도핑된 ZnO 나노입자의 Zn/Co ZIF 유도 합성 및 고성능 트리메틸아민 센서로의 응용)

  • Yoon, Ji-Wook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.5
    • /
    • pp.222-227
    • /
    • 2018
  • $Zn_{1-x}Co_x$ Zeolitic Imidazolate Framework (ZIF) (x = 0~0.05) were prepared by the co-precipitation of $Zn^{2+}$ and $Co^{2+}$ using 2-methylimidazole, which were converted into pure and Co-doped ZnO nanoparticles by heat treatment at $600^{\circ}C$ for 2 h. Homogeneous Zn/Co ZIFs were achieved at x < 0.05 owing to the strong coordination of the imidazole linker to $Zn^{2+}$ and $Co^{2+}$, facilitating atomic-scale doping of Co into ZnO via annealing. By contrast, heterogeneous Zn/Co ZIFs were formed at $x{\geq}0.05$, resulting in the formation of $Co_3O_4$ second phase. To investigate the potential as high-performance gas sensors, the gas sensing characteristics of pure and Co-doped ZnO nanoparticles were evaluated. The sensor using 3 at% Co-doped ZnO exhibited an unprecedentedly high response and selectivity to trimethylamine, whereas pure ZnO nanoparticles did not. The facile, bimetallic ZIF derived synthesis of doped-metal oxide nanoparticles can be used to design high-performance gas sensors.

Preparation of PEBAX/PVDF Composite Membrane and Separaration of Ethanol/Water Mixtures by Pervaporation (PEBAX/PVDF 복합막 제조 및 투과증발을 통한 에탄올/물 분리 연구)

  • Ye Won Jeong;Haeeun Na;Se Wook Jo;Min Young Shon
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.377-382
    • /
    • 2023
  • In this study, a PEBAX/PVDF composite membrane was fabricated, and its pervaporation performance was tested in an ethanol/water mixture. In addition, we attempted to improve the pervaporation performance of the composite membrane by forming a ZIF-8 layer on the surface of the PVDF substrate. The thickness of selective layer was optimized by comparing the pervaporation performance depending on the PEBAX thickness. A pervaporation test was performed on the Ethanol/Water mixture. As a result, the composite membrane using PVDF substrate with ZIF-8 layer had a flux of 1.98 kg/m2h and separation factor of 3.88, showing higher values of both permeation flux and selectivity than the composite membrane using bare PVDF substrate.

MOF-based membrane encapsulated ZnO nanowires for H2 selectivity (MOF 기반 멤브레인 기능화된 ZnO 나노선의 수소 가스 선택성)

  • Kim, Jae-Hun;Lee, Jae-Hyeong;Kim, Jin-Yeong;Kim, Sang-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.106-106
    • /
    • 2017
  • 가스센서는 사내 및 산업 환경에서의 유독성 또는 폭발성 가스 검출, 환경 모니터링, 질병 진단 등 매우 다양한 응용분야에서 큰 관심을 가지고 있다. 반도체 금속산화물(SMOs) 기반의 센서 분야에서는 이들의 감도 및 선택성을 향상시키기 위해 많은 노력을 기울이고 있다. 이는 센서의 선택성을 부여하게 되면 다양한 가스들이 존재하는 환경에서도 검출자가 원하는 가스만의 응답을 얻을 수 있기 때문이다. 본 연구에서는 MOF(Metal-Organic Framwork) 기반 멤브레인으로 ZIF-8(Zeolitic Imidazolate Frameworks 구조들 중 하나) 멤브레인 쉘 층을 이용하여 ZnO 나노선에 형성하였다. ZnO 나노선은 VLS공정 (Vapor-Liquid-Solid)을 이용하여 패턴된 전극을 갖는 $SiO_2$-grown Si 웨이퍼 상에 성장되었고, 성장된 ZnO 나노선은 2-methyl imidazole과 methanol이 포함된 고용체에 넣고 폐쇄된 압력용기 속에서 가열시켜 얻게 된다. 이렇게 얻어진 ZIF-8@ZnO 나노선의 ZIF-8 멤브레인은 분자 체 구조(molecular sieving structure)를 갖게 되며, 이들의 pore 크기는 약 $3.4{\AA}$을 갖는다. 따라서 이보다 더 큰 동적 직경을(kinetic diameter) 갖는 가스 종은 이 멤브레인을 통과할 수 없음을 나타내므로 제작된 시편은 $H_2$(kinetic diameter : $2.89{\AA}$), $C_7H_8$(kinetic diameter : $5.92{\AA}$), 그리고 $C_6H_6$(kinetic diameter : $5.27{\AA}$) 가스들을 각각 사용함으로써 ZIF-8@ZnO 나노선의 센서 특성을 조사했으며, 보다 정확한 비교를 위해 순수한 ZnO 나노선 역시 동일한 조건에서 측정되었다. 결과를 통해, 수소 가스를 제외한 다른 가스들에 대해서는 반응을 하지 않고, 오직 수소 가스에 대해서만 반응을 나타냈으며, 순수 ZnO 나노선의 수소 감응도보다 낮은 감응도를 나타내었다. 이는 멤브레인 쉘 층을 형성함으로써 ZnO 나노선의 표면적이 감소해 가스 분자와의 접촉점을 감소시키기 때문이라고 판단된다. 이와 같은 MOF 멤브레인의 캡슐화 전략은 가스센서뿐 아니라 바이오 센서 및 광촉매 등과 같은 이온 선택성을 필요로 하는 다양한 응용분야에 적용될 수 있을 것으로 기대된다.

  • PDF

Effect of Cobalt Loading on the Performance and Stability of Oxygen Reduction and Evolution Reactions in Rechargeable Zinc-air Batteries

  • Sheraz Ahmed;Joongpyo Shim;Gyungse Park
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.2
    • /
    • pp.87-92
    • /
    • 2024
  • The commercialization of rechargeable metal-air batteries is extremely desirable but designing stable oxygen reduction reaction (ORR) catalysts with non-noble metal still has faced challenges to replace platinum-based catalysts. The nonnoble metal catalysts for ORR were prepared to improve the catalytic performance and stability by the thermal decomposition of ZIF-8 with optimum cobalt loading. The porous carbon was obtained by the calcination of ZIF-8 and different loading amounts of Co nanoparticles were anchored onto porous carbon forming a Co/PC catalyst. Co/PC composite shows a significant increase in the ORR value of current and stability (500 h) due to the good electronic conductive PCN support and optimum cobalt metal loading. The significantly improved catalytic performance is ascribed to the chemical structure, synergistic effects, porous carbon networks, and rich active sites. This method develops a new pathway for a highly active and advantageous catalyst for electrochemical devices.