Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.44

Highly-permeable Mixed Matrix Membranes Based on SBS-g-POEM Copolymer, ZIF-8 and Ionic Liquid  

Kang, Dong A (Department of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Kihoon (Department of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Membrane Journal / v.29, no.1, 2019 , pp. 44-50 More about this Journal
Abstract
In this paper, we developed mixed matrix membranes (MMMs) consisting of SBS-g-POEM block-graft copolymer, ionic liquid (EMIMTFSI) and ZIF-8 nanoparticles to separate a $CO_2/N_2$ gas pair. The SBS-g-POEM is a rubbery block-graft copolymer synthesized through low-cost free-radical polymerization. The EMIMTFSI was dissolved into the SBS-g-POEM matrix and solution synthesized ZIF-8 nanoparticles were also dispersed into the copolymer matrix. The physico-chemical properties of manufactured membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray diffraction (XRD), which showed that the components were compatible with each other. The gas separation performance was confirmed by time-lag measurements showing $CO_2$ permeability of 537.0 barrer and $CO_2/N_2$ selectivity of 15.2. The result represents the EMIMTFSI and ZIF-8 nanoparticles improves the gas permeability more than two-times, without significantly sacrificing the $CO_2/N_2$ selectivity.
Keywords
block copolymer; graft copolymer; mixed matrix membranes; $CO_2$; ionic liquid;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 B. M. Sass, H. Farzan, R. Prabhakar, J. Gerst, J. Sminchak, M. Bhargava, B. Nestleroth, and J. Figueroa, "Considerations for treating impurities in oxy-combustion flue gas prior to sequestration", Energy Procedia, 1, 535 (2009).   DOI
2 L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008).   DOI
3 M. Rezakazemi, A. E. Amooghin, M. M. MontazerRahmati, A. F. Ismail, and T. Matsuura, "State-of-the-art membrane based $CO_2$ separation using mixed matrix membranes (MMMs): An overview on current status and future directions", Prog. Polym. Sci., 39, 817 (2014).   DOI
4 M. Ahmadi, S. Janakiram, Z. Dai, L. Ansaloni, and L. Deng, "Performance of mixed matrix membranes containing porous two-dimensional (2D) and three-dimensional (3D) fillers for $CO_2$ Separation: A review", Membranes, 8, 50 (2018).   DOI
5 J. Dechnik, J. Gascon, C. J. Doonan, C. Janiak, and C. J. Sumby, "Sumby, mixed-matrix membranes", Angew. Chem. Int. Ed., 56, 9292 (2017).   DOI
6 R. Lin, B. V. Hernandez, L. Ge, and Z. Zhu, "Metal organic framework based mixed matrix membranes: An overview on filler/polymer interfaces", J. Mater. Chem. A, 6, 293 (2018).   DOI
7 R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'keeffe, and O. M. Yaghi, "High-throughput synthesis of zeolitic imidazolate frameworks and application to $CO_2$ capture", Science, 319, 939 (2008).   DOI
8 B. Wang, A. P. Cote, H. Furukawa, M. O'Keeffe, and O. M. Yaghi, "Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs", Nature, 453, 207 (2008).   DOI
9 C.-W. Tsai, J. Niemantsverdriet, and E. H. Langner, "Enhanced $CO_2$ adsorption in nano-ZIF-8 modified by solvent assisted ligand exchange", Micropor. Mesopor. Mater., 262, 98 (2018).   DOI
10 C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, "A review of electrolyte materials and compositions for electrochemical supercapacitors", Chem. Soc. Rev., 44, 7484 (2015).   DOI
11 J. Y. Lim, J. K. Kim, C. S. Lee, J. M. Lee, and J. H. Kim, "Hybrid membranes of nanostructrual copolymer and ionic liquid for carbon dioxide capture", Chem. Eng. J., 322, 254 (2017).   DOI
12 J. Y. Lim, J. H. Lee, M. S. Park, J.-H. Kim, and J. H. Kim, "Hybrid membranes based on ionic-liquid-functionalized poly (vinyl benzene chloride) beads for $CO_2$ capture", J. Membr. Sci., 572, 365 (2019).   DOI
13 H. Abe, A. Takeshita, H. Sudo, K. Akiyama, and H. Kishimura, "$CO_2$ capture at room temperature and ambient pressure: Isomer effect in room temperature ionic liquid/propanol solutions", Green Sustain. Chem., 6, 116 (2016).   DOI
14 L. Hao, P. Li, T. Yang, and T.-S. Chung, "Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion $CO_2$ capture", J. Membr. Sci., 436, 221 (2013).   DOI
15 W. S. Chi, S. J. Kim, S. J. Lee, Y. S. Bae, and J. H. Kim, "Enhanced performance of mixed-matrix membranes through a graft copolymer-directed interface and interaction tuning approach", ChemSusChem, 8, 650 (2015).   DOI
16 S. Hwang, W. S. Chi, S. J. Lee, S. H. Im, J. H. Kim, and J. Kim, "Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for $CO_2/CH_4$ gas separation", J. Membr. Sci., 480, 11 (2015).   DOI
17 J. H. Choi, Y. E. Kim, S. C. Nam, S. H. Yun, Y. I. Yoon, and J.-H. Lee, "$CO_2$ absorption characteristics of a piperazine derivative with primary, secondary, and tertiary amino groups", Korean J. Chem. Eng., 33, 3222 (2016).   DOI
18 J. F. Masson, L. Pelletier, and P. Collins, "Rapid FTIR method for quantification of styrene-butadiene type copolymers in bitumen", J. Appl. Polym. Sci., 79, 1034 (2001).   DOI
19 O. Van Asselen, I. Van Casteren, J. Goossens, and H. Meijer, "Deformation behavior of triblock copolymers based on polystyrene: An FT-IR spectroscopy study", in: Macromolecular Symposia, Wiley Online Library, 205, 85-94 (2004).
20 J. H. Lee, J. Y. Lim, M. S. Park, and J. H. Kim, "Improvement in the $CO_2$ permeation properties of high-molecular-weight poly (ethylene oxide): Use of amine-branched poly (amidoamine) dendrimer", Macromolecules, 51, 8800 (2018).   DOI
21 L. C. Tome, D. J. Patinha, R. Ferreira, H. Garcia, C. Silva Pereira, C. S. Freire, L. P. N. Rebelo, and I. M. Marrucho, "Cholinium-based supported ionic liquid membranes: A sustainable route for carbon dioxide separation", ChemSusChem, 7, 110 (2014).   DOI
22 S. Khalili, B. Khoshandam, and M. Jahanshahi, "A comparative study of $CO_2$ and $CH_4$ adsorption using activated carbon prepared from pine cone by phosphoric acid activation", Korean J. Chem. Eng., 33, 2943 (2016).   DOI
23 J. M. MacInnes, A. A. Ayash, and G. R. Dowson, "$CO_2$ absorption using diethanolamine-water solutions in a rotating spiral contactor", Chem. Eng. J., 307, 1084 (2017).   DOI
24 S. Zhang, W. Cai, J. Yu, C. Ji, and N. Zhao, "A facile one-pot cation-anion double hydrolysis approach to the synthesis of supported $MgO/{\gamma}-Al_2O_3$ with enhanced adsorption performance towards $CO_2$", Chem. Eng. J., 310, 216 (2017).   DOI
25 N. U. Kim, B. J. Park, M. S. Park, and J. H. Kim, "Effect of PVP on $CO_2/N_2$ separation performance of self-crosslinkable P(GMA-g-PPG)-co-POEM) membranes", Membr. J., 28, 113 (2018).   DOI
26 C. H. Park, J. P. Jung, J. H. Lee, and J. H. Kim, "Enhancement of $CO_2$ permeance by incorporating CaCO3 in mixed matrix membranes", Membr. J., 28, 55 (2018).   DOI
27 N. Alvarez-Gutierrez, M. Gil, F. Rubiera, and C. Pevida, "Kinetics of $CO_2$ adsorption on cherry stone-based carbons in $CO_2/CH_4$ separations", Chem. Eng. J., 307, 249 (2017).   DOI
28 R. Patel, J. T. Park, M. S. Park, and J. H. Kim, "Synthesis, morphology and permeation properties of poly(dimethyl siloxane)-poly(1-vinyl-2-pyrrolidinone) comb copolymer", Membr. J., 27, 499 (2017).   DOI