Acknowledgement
Supported by : Ministry of Education, Singapore
References
- A.D. Cuellar, M.E. Webber, Environ. Res. Lett. 3 (2008) 034002. https://doi.org/10.1088/1748-9326/3/3/034002
- S. Cavenati, C.A. Grande, A.E. Rodrigues, C. Kiener, U. Muller, Ind. Eng. Chem. Res. 47 (2008) 6333. https://doi.org/10.1021/ie8005269
- X.Y. Chen, H. Vinh-Thang, A.A. Ramirez, D. Rodrigue, S. Kaliaguine, RSC Adv. 5 (2015) 24399. https://doi.org/10.1039/C5RA00666J
- A. Petersson, A. WeLLInGer, IEA Bioenergy 20 (2009) 1.
- F. Bauer, T. Persson, C. Hulteberg, D. Tamm, Biofuels Bioprod. Bior. 7 (2013) 499. https://doi.org/10.1002/bbb.1423
- D.R. Paul, Y.P. Yampol'skii, Polymeric Gas Separation Membranes, CRC press, 1993.
- L.M. Robeson, J. Membr. Sci. 62 (1991) 165. https://doi.org/10.1016/0376-7388(91)80060-J
- L.M. Robeson, J. Membr. Sci. 320 (2008) 390. https://doi.org/10.1016/j.memsci.2008.04.030
- S. Basu, A.L. Khan, A. Cano-Odena, C. Liu, I.F. Vankelecom, Chem. Soc. Rev. 39 (2010) 750. https://doi.org/10.1039/B817050A
- M.B. HAGG, J.A. Lie, A. Lindbrathen, Ann. N. Y. Acad. Sci. 1 (984) (2003) 329.
- A. Leenaars, K. Keizer, A. Burggraaf, J. Mater. Sci. 19 (1984) 1077. https://doi.org/10.1007/BF01120016
- A. Tavolaro, E. Drioli, Adv. Mater. 11 (1999) 975. https://doi.org/10.1002/(SICI)1521-4095(199908)11:12<975::AID-ADMA975>3.0.CO;2-0
- M. Shah, M.C. McCarthy, S. Sachdeva, A.K. Lee, H.-K. Jeong, Ind. Eng. Chem. Res. 51 (2012) 2179. https://doi.org/10.1021/ie202038m
- Y.S. Li, F.Y. Liang, H. Bux, A. Feldhoff, W.S. Yang, J. Caro, Angew. Chem. Int. Ed. 122 (2010) 558. https://doi.org/10.1002/ange.200905645
- T.-S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Prog. Polym. Sci. 32 (2007) 483. https://doi.org/10.1016/j.progpolymsci.2007.01.008
- P.S. Goh, A.F. Ismail, S.M. Sanip, B.C. Ng, M. Aziz, Sep. Purif. Technol. 81 (2011) 243. https://doi.org/10.1016/j.seppur.2011.07.042
- M. Aroon, A. Ismail, T. Matsuura, M. Montazer-Rahmati, Sep. Purif. Technol. 75 (2010) 229. https://doi.org/10.1016/j.seppur.2010.08.023
- G. Dong, H. Li, V. Chen, J. Mater. Chem. A 1 (2013) 4610. https://doi.org/10.1039/c3ta00927k
- M.G. Suer, N. Bac, L. Yilmaz, J. Membr. Sci. 91 (1994) 77. https://doi.org/10.1016/0376-7388(94)00018-2
- R. Adams, C. Carson, J. Ward, R. Tannenbaum, W. Koros, Microporous Mesoporous Mater. 131 (2010) 13. https://doi.org/10.1016/j.micromeso.2009.11.035
- X. Li, Y. Cheng, H. Zhang, S. Wang, Z. Jiang, R. Guo, H. Wu, ACS Appl. Mater. Interfaces 7 (2015) 5528. https://doi.org/10.1021/acsami.5b00106
- X. Li, L. Ma, H. Zhang, S. Wang, Z. Jiang, R. Guo, H. Wu, X. Cao, J. Yang, B. Wang, J. Membr. Sci. 479 (2015) 1. https://doi.org/10.1016/j.memsci.2015.01.014
- O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.O.Z.R. Yazaydin, J.T. Hupp, J. Am. Chem. Soc. 134 (2012) 15016. https://doi.org/10.1021/ja3055639
- K.C. Stylianou, W.L. Queen, CHIMIA Int. J. Chem. 69 (2015) 274. https://doi.org/10.2533/chimia.2015.274
- B. Seoane, J. Coronas, I. Gascon, M.E. Benavides, O. Karvan, J. Caro, F. Kapteijn, J. Gascon, Chem. Soc. Rev. 44 (2015) 2421. https://doi.org/10.1039/C4CS00437J
- Y. Dai, J. Johnson, O. Karvan, D.S. Sholl, W. Koros, J. Membr. Sci. 401 (2012) 76.
- M.J.C. Ordonez, K.J. Balkus, J.P. Ferraris, I.H. Musselman, J. Membr. Sci. 361 (2010) 28. https://doi.org/10.1016/j.memsci.2010.06.017
- V. Nafisi, M.-B. Hagg, J. Membr. Sci. 459 (2014) 244. https://doi.org/10.1016/j.memsci.2014.02.002
- A.F. Bushell, M.P. Attfield, C.R. Mason, P.M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo, J. Carolus Jansen, M. Lanc, K. Friess, V. Shantarovich, V. Gustov, V. Isaeva, J. Membr. Sci. 427 (2013) 48. https://doi.org/10.1016/j.memsci.2012.09.035
- Y. Dai, J.R. Johnson, O. Karvan, D.S. Sholl, W.J. Koros, J. Membr. Sci. 401-402 (2012) 76. https://doi.org/10.1016/j.memsci.2012.01.044
- Q. Song, S.K. Nataraj, M.V. Roussenova, J.C. Tan, D.J. Hughes, W. Li, P. Bourgoin, M.A. Alam, A.K. Cheetham, S.A. Al-Muhtaseb, E. Sivaniah, Energy Environ. Sci. 5 (2012) 8359. https://doi.org/10.1039/c2ee21996d
- V. Nafisi, M.-B. Hagg, J. Membr. Sci. 459 (2014) 244. https://doi.org/10.1016/j.memsci.2014.02.002
- E.M. Mahdi, J.-C. Tan, Polymer 97 (2016) 31. https://doi.org/10.1016/j.polymer.2016.05.012
- E.M. Mahdi, J.-C. Tan, J. Membr. Sci. 498 (2016) 276. https://doi.org/10.1016/j.memsci.2015.09.066
- M.J.C. Ordonez, K.J. Balkus, J.P. Ferraris, I.H. Musselman, J. Membr. Sci. 361 (2010) 28. https://doi.org/10.1016/j.memsci.2010.06.017
- N.A.H.M. Nordin, A.F. Ismail, A. Mustafa, R.S. Murali, T. Matsuura, RSC Adv. 4 (2014) 52530. https://doi.org/10.1039/C4RA08460H
- A. Bhaskar, R. Banerjee, U. Kharul, J. Mater. Chem. A 2 (2014) 12962. https://doi.org/10.1039/C4TA00611A
- S.N. Wijenayake, N.P. Panapitiya, S.H. Versteeg, C.N. Nguyen, S. Goel, K.J. Balkus, I.H. Musselman, J.P. Ferraris, Ind. Eng. Chem. Res. 52 (2013) 6991. https://doi.org/10.1021/ie400149e
- X. Li, Y. Cheng, H. Zhang, S. Wang, Z. Jiang, R. Guo, H. Wu, ACS Appl. Mater. Interfaces 7 (2015) 5528. https://doi.org/10.1021/acsami.5b00106
- J. Wei, Z. Zang, Y. Zhang, M. Wang, J. Du, X. Tang, Opt. Lett. 42 (2017) 911. https://doi.org/10.1364/OL.42.000911
- Z. Zang, X. Zeng, M. Wang, W. Hu, C. Liu, X. Tang, Sens. Actuators B Chem. 252 (2017) 1179. https://doi.org/10.1016/j.snb.2017.07.144
- H. Huang, J. Zhang, L. Jiang, Z. Zang, J. Alloys Compd. 718 (2017) 112. https://doi.org/10.1016/j.jallcom.2017.05.132
- M.P. Down, S.J. Rowley-Neale, G.C. Smith, C.E. Banks, ACS Appl. Energy Mater.1 (2018) 707. https://doi.org/10.1021/acsaem.7b00164
- D.A. Grishanov, A.A. Mikhaylov, A.G. Medvedev, J. Gun, P.V. Prikhodchenko, Z.J. Xu, A. Nagasubramanian, M. Srinivasan, O. Lev, Energy Technol. 6 (2018) 127. https://doi.org/10.1002/ente.201700760
- H. Koolivand, A. Sharifa, E. Chehrazi, M.R. Kashani, S.M.R. Paran, Polym. Sci. Ser. A 58 (2016) 801. https://doi.org/10.1134/S0965545X16050084
- C. Duan, X. Jie, D. Liu, Y. Cao, Q. Yuan, J. Membr. Sci. 466 (2014) 92. https://doi.org/10.1016/j.memsci.2014.04.024
- M. Harasimowicz, P. Orluk, G. Zakrzewska-Trznadel, A. Chmielewski, J. Hazard. Mater. 144 (2007) 698. https://doi.org/10.1016/j.jhazmat.2007.01.098
- J. Cravillon, S. Münzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Chem. Mater. 21 (2009) 1410. https://doi.org/10.1021/cm900166h
- T.H. Bae, J.S. Lee, W. Qiu, W.J. Koros, C.W. Jones, S. Nair, Angew. Chem. Int. Ed. 49 (2010) 9863. https://doi.org/10.1002/anie.201006141
- Y. Yang, K. Goh, R. Wang, T.-H. Bae, Chem. Commun. 53 (2017) 4254. https://doi.org/10.1039/C7CC00295E
- H. Gong, T.H. Nguyen, R. Wang, T.-H. Bae, J. Membr. Sci. 495 (2015) 169. https://doi.org/10.1016/j.memsci.2015.08.018
- Y. Pan, Y. Liu, G. Zeng, L. Zhao, Z. Lai, Chem. Commun. 47 (2011) 2071. https://doi.org/10.1039/c0cc05002d
- G. Liu, L. Wang, B. Wang, T. Gao, D. Wang, RSC Adv. 5 (2015) 63553. https://doi.org/10.1039/C5RA09748G
- K. Krishnamoorthy, M. Veerapandian, K. Yun, S.-J. Kim, Carbon 53 (2013) 38. https://doi.org/10.1016/j.carbon.2012.10.013
- T.-H. Bae, J. Liu, J.S. Lee, W.J. Koros, C.W. Jones, S. Nair, J. Am. Chem. Soc. 131 (2009) 14662. https://doi.org/10.1021/ja907435c
- H. Gong, S.S. Lee, T.-H. Bae, Microporous Mesoporous Mater. 237 (2017) 82. https://doi.org/10.1016/j.micromeso.2016.09.017
- M. Amirilargani, B. Sadatnia, J. Membr. Sci. 469 (2014) 1. https://doi.org/10.1016/j.memsci.2014.06.034
- S.N. Wijenayake, N.P. Panapitiya, S.H. Versteeg, C.N. Nguyen, S. Goel, K.J. Balkus Jr., I.H. Musselman, J.P. Ferraris, Ind. Eng. Chem. Res. 52 (2013) 6991. https://doi.org/10.1021/ie400149e
- N.P. Patel, J.M. Zielinski, J. Samseth, R.J. Spontak, Macromol. Chem. Phys. 205 (2004) 2409. https://doi.org/10.1002/macp.200400356
- L. Nicolais, M. Narkis, Polym. Eng. Sci. 11 (1971) 194. https://doi.org/10.1002/pen.760110305
- M. Ionita, A.M. Pandele, L. Crica, L. Pilan, Compos. B Eng. 59 (2014) 133. https://doi.org/10.1016/j.compositesb.2013.11.018
- V. Nafisi, M.-B. Hagg, Sep. Purif. Technol. 128 (2014) 31. https://doi.org/10.1016/j.seppur.2014.03.006
- M. Askari, T.-S. Chung, J. Membr. Sci. 444 (2013) 173. https://doi.org/10.1016/j.memsci.2013.05.016
- H. Huang, Y. Ying, X. Peng, J. Mater. Chem. A. 2 (2014) 13772. https://doi.org/10.1039/C4TA02359E
- S. Wang, Y. Wu, N. Zhang, G. He, Q. Xin, X. Wu, H. Wu, X. Cao, M.D. Guiver, Z. Jiang, Energy Environ. Sci. 9 (2016) 3107. https://doi.org/10.1039/C6EE01984F
- H. Bux, F. Liang, Y. Li, J. Cravillon, M. Wiebcke, J.R. Caro, J. Am. Chem. Soc. 131 (2009) 16000. https://doi.org/10.1021/ja907359t
Cited by
- Graphene-Incorporated Biopolymeric Mixed-Matrix Membrane for Enhanced CO2 Separation by Regulating the Support Pore Filling vol.10, pp.33, 2018, https://doi.org/10.1021/acsami.8b09377
- Recent progress in gas separation using functionalized graphene nanopores and nanoporous graphene oxide membranes vol.134, pp.5, 2018, https://doi.org/10.1140/epjp/i2019-12612-4
- Graphene-Based Membranes for CO2/CH4 Separation: Key Challenges and Perspectives vol.9, pp.14, 2018, https://doi.org/10.3390/app9142784
- Molecular Modeling Investigations of Sorption and Diffusion of Small Molecules in Glassy Polymers vol.9, pp.8, 2018, https://doi.org/10.3390/membranes9080098
- Trends in Solid Adsorbent Materials Development for CO2 Capture vol.11, pp.38, 2019, https://doi.org/10.1021/acsami.9b08487
- Mixed-matrix membranes for CO2 separation: role of the third component vol.7, pp.43, 2018, https://doi.org/10.1039/c9ta09012f
- Exploration of the Synergy Between 2D Nanosheets and a Non-2D Filler in Mixed Matrix Membranes for Gas Separation vol.8, pp.None, 2018, https://doi.org/10.3389/fchem.2020.00058
- A New Industrial Technology for Mass Production of Graphene/PEBA Membranes for CO 2 /CH 4 Selectivity with High Dispersion, Thermal and Mechanical Performance vol.12, pp.4, 2018, https://doi.org/10.3390/polym12040831
- Hierarchical 5A Zeolite-Containing Carbon Molecular Sieve Membranes for O2/N2 Separation vol.30, pp.4, 2020, https://doi.org/10.14579/membrane_journal.2020.30.4.260
- Zeolite imidazolate framework (ZIF)‐based mixed matrix membranes for CO2 separation: A review vol.137, pp.33, 2018, https://doi.org/10.1002/app.48968
- MOF Nanosheet-Based Mixed Matrix Membranes with Metal-Organic Coordination Interfacial Interaction for Gas Separation vol.12, pp.43, 2018, https://doi.org/10.1021/acsami.0c14639
- Graphene-based Membranes for H 2 Separation: Recent Progress and Future Perspective vol.10, pp.11, 2020, https://doi.org/10.3390/membranes10110336
- Graphene‐Based Advanced Membrane Applications in Organic Solvent Nanofiltration vol.31, pp.6, 2018, https://doi.org/10.1002/adfm.202006949
- Integration of Stable Ionic Liquid-Based Nanofluids into Polymer Membranes. Part II: Gas Separation Properties toward Fluorinated Greenhouse Gases vol.11, pp.3, 2018, https://doi.org/10.3390/nano11030582
- Molecular Siting of C1-C6 n-Alkanes in ZIF-4: A Hybrid Monte Carlo Study vol.125, pp.29, 2018, https://doi.org/10.1021/acs.jpcc.1c03897
- Recent Advances in Polymer-Inorganic Mixed Matrix Membranes for CO2 Separation vol.13, pp.15, 2018, https://doi.org/10.3390/polym13152539
- Mixed Dimensional Nanostructure (UiO‐66‐Decorated MWCNT) as a Nanofiller in Mixed‐Matrix Membranes for Enhanced CO2/CH4 Separation vol.27, pp.43, 2018, https://doi.org/10.1002/chem.202101017
- Recent Progress in Mixed-Matrix Membranes for Hydrogen Separation vol.11, pp.9, 2021, https://doi.org/10.3390/membranes11090666
- Synergistic effect of hybridized TNT@GO fillers in CTA-based mixed matrix membranes for selective CO2/CH4 separation vol.282, pp.no.pb, 2018, https://doi.org/10.1016/j.seppur.2021.120128