Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.1.46

Gas Permeation Characteristics of PEBAX2533 Membrane Containing PEGDA and ZIF-8  

Kim, Sun Hee (Department of Chemical Engineering and Materials Science, Sangmyung University)
Hong, Se Ryeong (Kyedang College of General Educations, Sangmyung University)
Lee, Hyun Kyung (Department of Chemical Engineering and Materials Science, Sangmyung University)
Publication Information
Membrane Journal / v.30, no.1, 2020 , pp. 46-56 More about this Journal
Abstract
In this study, poly (ether-block-amide) (PEBAX)/poly (ethylene) glycoldiacrylate (PEGDA)/zeolitic imidazolate framework-8 (ZIF-8)-polyethersulfone (PES) composite membranes were prepared. The gas permeation properties of N2 and CO2 were investigated for each composite membrane. First, the gas permeability in the PEBAX/PEGDA-PES composite membrane decreased with increasing PEGDA content for each molecular weight at PEGDA250, PEGDA575, and PEGDA-700 g/mol. The CO2/N2 selectivity showed a constant value and gradually increased with increasing PEGDA content after 30 wt% PEGDA, and PEBAX/PEGDA250 50 wt%-PES prepared by adding PEGDA250 g/mol 50 wt% showed a selectivity of 15.1. This is because as the PEGDA content increases, the number of diacrylate groups increases, and the CO2 affinity due to the ether structure of PEGDA increases. Gas permeation properties according to ZIF-8 were investigated for composite membranes of PEGDA 0 to 30 wt%, with CO2/N2 selectivity almost constant for each molecular weight. The permeability of N2 and CO2 gradually increased with increasing ZIF-8 content, and CO2/N2 selectivity was the highest at 3.4 in PEBAX/PEGDA250 g/mol 30 wt%/ZIF-8 20 wt%-PES composite membrane.
Keywords
PEBAX; PEGDA; ZIF-8; permeability; selectivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. F. Bushell, M. P. Attfield, C. R. Mason, P. M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo, J. C. Jansen, M. Lanc, K. Friess, V. Shantarovich, V. Gustov, and V. Isaeva, "Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8", J. Membr. Sci., 427, 48 (2013).   DOI
2 M. R. Raupach, G. Marland, P. Ciais, C. L Quere, J. G. Canadell, G. Klepper, and C. B. Field, "Global and regional drivers of accelerating $CO_2$ emissions", Proc. Natl. Acad. Sci. U.S.A., 104, 10288 (2007).   DOI
3 L. Ge, Z. Zhu, and V. Rudolph, "Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane", Sep. Purif. Technol., 78, 76 (2011).   DOI
4 F. H. Akhtar, M. Kumar, and K. V. Peinemann, "PEBAX1657/graphene oxide composite membranes for improved water vapor separation", J. Membr. Sci., 525, 187 (2017).   DOI
5 M. Shah, M. C. McCarthy, S. Sachdeva, A. K. Lee, and H. K. Jeong, "Current status of metal-organic framework membranes for gas separations: Promises and challenges", Ind. Eng. Chem. Res., 51, 2179 (2012).   DOI
6 J. H. Lee and J. Kim, "Research trends of metal-organic framework membranes: Fabrication methods and gas separation applications", Membr. J., 25, 465 (2015).   DOI
7 V. M. A. Melgar, J. Kim, and M. R. Othman, "Zeolitic imidazolate framework membranes for gas separation: A review of synthesis methods and gas separation performance", J. Ind. Eng. Chem., 28, 1 (2015).   DOI
8 A. B. Shelekhin, E. J. Grosgogeat, and S. T. Hwang, "Gas separation properties of a new polymer/inorganic composite membrane", J. Membr. Sci., 66, 129 (1992).   DOI
9 S. Sridhar, R. Suryamurali, B. Smitha, and T. M. Aminabhavi, "Development of crosslinked poly(ether-block-amide) membrane for $CO_2/CH_4$ separation", Colloids Surf. A., 297, 267 (2007).   DOI
10 V. Bondar, B. D. Freeman, and I. Pinnau, "Gas transport properties of poly(ether-b-amide) segmented block copolymers", J. Polym. Sci.(Part B: Polym. Phys.), 38, 2051 (2000).   DOI
11 A. Car, C. Stropnik, W. Yave, and K. Peinemann, "Pebax/polyethylene glycol blend thin film composite membranes for $CO_2$ separation: Performance with mixed gases", Sep. Purif. Technol., 62, 110 (2008).   DOI
12 K. Kim, S. Park, W. So, D. Ahn, and S. Moon, "$CO_2$separation performances of composite membranes of 6FDA-based polyimides with a polar group", J. Membr. Sci., 211, 41 (2003).   DOI
13 H. Kim, C. Lim, and S. Hong, "Gas permeation properties of organic-inorganic hybrid membranes prepared from hydroxyl terminated polyether and 3-isocyanatopropyltriethoxysilane", J. Sol-Gel Sci. Technol., 36, 213 (2005).   DOI
14 H. B. Kim, M. W. Lee, W. K. Park, S. J. Lee, H. K. Lee, and S. H. Lee, "Permeation properties of single gases ($N_2$, $O_2$, $SF_6$, $CF_4$) through PDMS and PEBAX membranes", Membr. J., 22, 201 (2012).
15 C. H. Hyung, C. D. Park, K. H. Kim, J. W. Rhim, T. S. Hwang, and H. K. Lee, "A study on the $SO_2/CO_2/N_2$ mixed gas separation using polyetherimide/PEBAX/PEG composite hollow fiber membrane", Membr. J., 22, 404 (2012).
16 H. J. Kim, "Gas permeation properties of carbon dioxide and methane for $PEBAX^{TM}$/TEOS hybrid membranes", Korean Chem. Eng. Res., 49, 460 (2011).   DOI
17 M. M. Rahman, V. Filiz, S. Shishatskiy, C. Abetz, S. Neumann, S Bolmer, M. M. Khan, and V. Abetz, "$PEBAX^{(R)}$ with PEG functionalized POSS as nanocomposite membranes for $CO_2$ separation", J. Membr. Sci., 437, 286 (2013).   DOI
18 S. H. Lee, M. Z. Kim, C. H. Cho, and M. H. Han, "$CO_2$ permeation behavior of Pebax-2533 plate membranes prepared from 1-propanol/n-buthanol mixed solvents", Membr. J., 23, 367 (2013).
19 C. D. Park, C. H. Hyung, K. H. Kim, W. K. Choi, Y. S. Park, and H. K. Lee, "Study on the removal of water vapor using PEI/PEBAX composite hollow fiber membrane", Membr. J., 23(2), 119 (2013).
20 X. Feng and R. Y. M Huang, "Resistance model approach to asymmetric polyetherimide membranes for pervaporation of isopropanol/water mixtures", J. Membr. Sci., 84, 15 (1993).   DOI
21 T. Masuda, E. Isobe, and T. Higashimura, "Polymerization of 1-(trimethylsilyl)-1-propyne by halides of niobium (V) and tantalum (V) and polymer properties", Macromolecules, 18, 841 (1985).   DOI
22 A. Jomekian, R. M. Behbahani, T. Mohammadi, and A. Kargari, "$CO_2/CH_4$ separation by high performance co-casted ZIF-8/PEBAX1657/PES mixed matrix membrane", J. Nat. Gas Sci. Eng., 31, 562 (2016).   DOI
23 Q. Hu, E. Marand, S. Dhingra, D. Fritsch, J. Wen, and G. Wilkes, "Poly(amide-imide)/$TiO_2$ nano-composite gas separation membranes: Fabrication and characterization", J. Membr. Sci., 135, 65 (1997).   DOI
24 C. K. Yeom, J. M. Lee, Y. T. Hong, K. Y. Choi, and S. C. Kim, "Analysis of permeation transients of pure gases through dense polymeric membranes measured by a new permeation apparatus", J. Membr. Sci., 166, 71 (2000).   DOI
25 K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi, "Exceptional chemical and thermal stability of zeolitic imidazolate frameworks", PANS, 27, 10186 (2006).
26 M. C. Choi, J. Y. Jung, H. S. Yeom, and Y. W. Chang, "Mechanical, thermal, barrier, and rheological properties of poly(ether block amide) elastomer/organoclay nanocomposite prepared by melt blending", Polym. Eng. Sci., 53, 982 (2012).   DOI
27 J. H. Kim and Y. M. Lee, "Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes", J. Membr. Sci., 193, 209 (2001).   DOI
28 M. Imani, S. Sharifi, H. Mirzadeh, and F. Ziaei, "Monitoring of polyethylene glycoldiacrylate-based hydrogel formation by real time NMR spectroscopy", Iran. Polym. J., 16, 13 (2007).
29 Y. Wang, S. M. Alhassan, V. H. Yang, and D. A. Schiraldi, "Polyether-block-amide copolymer/clay films prepared via a freeze-drying method", Composites: Part B, 45, 625 (2013).   DOI
30 Y. Hu, H. Kazemian, S. Rohani, Y. Huang, and Y. Song, "In situ high pressure study of ZIF-8 by FTIR spectroscopy", Chem. Commun., 47, 12694 (2011).   DOI
31 A. Ghadimi, M. Amirilargani, T. Mohammadi, N. Kasiri, and B Sadatnia, "Preparation of alloyed poly(ether block amide)/poly(ethylene glycol diacrylate) membranes for separation of $CO_2/H_2$ (syngas application)", J. Membr. Sci., 458, 14 (2014).   DOI
32 P. D. Sutrisna, J. Hou, H. Li, Y. Zhang, and V. Chen, "Improved operational stability of Pebax-based gas separation membranes with ZIF-8: A comparative study of flat sheet and composite hollow fibre membranes", J. Membr. Sci., 524, 266 (2017).   DOI
33 X. C. Huang, Y. Y. Lin, J. P. Zhang, and X. M. Chen, "Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies", Angew. Chem. Int. Ed., 45, 1557 (2006).   DOI
34 M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O'Keeffe, and O. M. Yaghi, "Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks", Acc. Chem. Res., 34, 319 (2001).   DOI
35 S. W. Hwang, Y. C. Chung, B. C. Chun, and S. J. Lee, "Gas permeability of polyethylene films containing zeolite powder", Polymer(Korea), 28(5), 374 (2004).
36 Y. Dai, J. R. Johnson, O. Karvan, D. S. Sholl, and W. J. Koros, "$Ultem^{(R)}/ZIF-8$ mixed matrix hollow fiber membranes for $CO_2/N_2$ separations", J. Membr. Sci., 401, 76 (2012).   DOI