We obtain the conditions on ${\beta}$ so that $1+{\beta}zp^{\prime}(z){\prec}1+4z/3+2z^2/3$ implies p(z) ${\prec}$ (2+z)/(2-z), $1+(1-{\alpha})z$, $(1+(1-2{\alpha})z)/(1-z)$, ($0{\leq}{\alpha}$<1), exp(z) or ${\sqrt{1+z}}$. Similar results are obtained by considering the expressions $1+{\beta}zp^{\prime}(z)/p(z)$, $1+{\beta}zp^{\prime}(z)/p^2(z)$ and $p(z)+{\beta}zp^{\prime}(z)/p(z)$. These results are applied to obtain sufficient conditions for normalized analytic function f to belong to various subclasses of starlike functions, or to satisfy the condition ${\mid}log(zf^{\prime}(z)/f(z)){\mid}$ < 1 or ${\mid}(zf^{\prime}(z)/f(z))^2-1{\mid}$ < 1 or zf'(z)/f(z) lying in the region bounded by the cardioid $(9x^2+9y^2-18x+5)^2-16(9x^2+9y^2-6x+1)=0$.
Let $S(z_1,z_2),\;S_1(z_1,z_2)$ and $S_2(z_1,z_2)$ be power series with operator coefficients such that $S_(z_1,\;z_2)=S_1(z_1,z_2)S_2(z_1,z_2)$. Assume that the multiplications by $S_1(z_1,z_2)$ and $S_2(z_1,z_2)$ are contractive transformations in H($\mathbb{D}^2,\;\mathcal{C}$). Then the factorizations of spaces $\mathcal{D}(\mathbb{D},\;\tilde{S})$ and $\mathcal{D}(\mathbb{D}^2,\mathcal{S})$ are well-behaved.
In this paper we deal with the open problem posed by Lü, Li and Yang [10]. In fact, we prove the following result: Let f(z) be a transcendental meromorphic function of finite order having finitely many poles, c1, c2, …, cn ∈ ℂ\{0} and k, n ∈ ℕ. Suppose fn(z), f(z+c1)f(z+c2) ⋯ f(z+cn) share 0 CM and fn(z)-Q1(z), (f(z+c1)f(z+c2) ⋯ f(z+cn))(k) - Q2(z) share (0, 1), where Q1(z) and Q2(z) are non-zero polynomials. If n ≥ k+1, then $(f(z+c_1)f(z+c_2)\;{\cdots}\;f(z+c_n))^{(k)}\;{\equiv}\;{\frac{Q_2(z)}{Q_1(z)}}f^n(z)$. Furthermore, if Q1(z) ≡ Q2(z), then $f(z)=c\;e^{\frac{\lambda}{n}z}$, where c, λ ∈ ℂ \ {0} such that eλ(c1+c2+⋯+cn) = 1 and λk = 1. Also we exhibit some examples to show that the conditions of our result are the best possible.
시각적인 클래스 모델로 기 제시된 2+1 View 통합 메타모델은 비정형적인 명세에 기인하여 명확하게 모델의 구문을 표현하지 못하고 있으며, 또한 그 모델의 정확성을 보장할 수 없다. 본 논문은 Z와 Object-Z를 사용해서 2+1 View 통합 메타모델의 구문적 의미를 정형적으로 명세하고, Z/Eves 툴을 통해 메타모델의 정확성을 검사하는 것이다. 정형 명세는 클래스 모델과 Z/Object-Z간의 변환규칙을 적용해서 2+1 View 통합 메타모델의 구문과 정적 시멘틱에 대해 Z와 Object-Z 스키마로 각각 표현한다. 메타모델의 검사는 Z 스키마 명세에 대해 Z/Eves 도구를 사용하여 구문, 타입 검사 그리고 도메인 검사를 수행하여 메타모델의 정확성을 입증한다. 이로서, 2+1 View 통합 메타모델 메타모델의 Z/Object-Z 변환을 통해 구조물의 구문적 의미를 명확하게 표현할 수 있으며, 또한 그 메타모델의 정확성을 검사할 수 있다.
In this article, we investigate the growth of meromorphic solutions of $${\alpha}(z)(\frac{{\Delta}_c{\eta}}{{\eta}})^2\,+\,(b_2(z){\eta}^2(z)\;+\;b_1(z){\eta}(z)\;+\;b_0(z))\frac{{\Delta}_c{\eta}}{{\eta}} \atop =d_4(z){\eta}^4(z)\;+\;d_3(z){\eta}^3(z)\;+\;d_2(z){\eta}^2(z)\;+\;d_1(z){\eta}(z)\;+\;d_0(z),$$ where a(z), bi(z) for i = 0, 1, 2 and dj (z) for j = 0, ..., 4 are given functions, △cη = η(z + c) - η(z) with c ∈ ℂ\{0}. In particular, when the a(z), the bi(z) and the dj(z) are polynomials, and d4(z) ≡ 0, we shall show that if η(z) is a transcendental entire solution of finite order, and either deg a(z) ≠ deg d0(z) + 1, or, deg a(z) = deg d0(z) + 1 and ρ(η) ≠ ½, then ρ(η) ≥ 1.
Let W(z) be a power series with operator coefficients such that multiplication by W(z) is contractive in C(z). The overlapping space $L(\varphi)$ of H(W) in C(z) is a Herglotz space with Herglotz function $\varphi(z)$ which satisfies $\varphi(z)+\varphi^*(z^{-1})=2[1-W^{*}(z^{-1})W(z)]$. The identity ${}_{L(\varphi)}={-}_{H(W)}$ holds for every f(z) in $L(\varphi)$ and for every vector c.
Let $Z_1, Z_2, \ldots, Z_l$ be random set functions or intergrals. Then it is possible to discuss their products. In the case of random integrals, $Z_i$ is a random set function indexed y a family, $G_i$ say, of real valued functions g on $S_i$ for which the integrals $Z_i(g) = \smallint gdZ_i$ are well defined. If $g_i = \in g_i (i = 1, 2, \ldots, l) and g_1 \otimes \cdots \otimes g_l$ denotes the tensor product $g(s) = g_1(s_1)g_2(s_2) \cdots g_l(s_l) for s = (s_1, s_2, \ldots, s_l) and s_i \in S_i$, then we can defined $Z(g) = (Z_1 \times Z_2 \times \cdots \times Z_l)(g) = Z_1(g_1)Z_2(g_2) \cdots Z_l(g_l)$.
For functions f(z) = z + a2z2 + a3z3 + ⋯ belonging to particular classes, this paper finds sharp bounds for the initial coefficients a2, a3, a4, as well as the sharp estimate for the second order Hankel determinant H2(2) = a2a4 - a23. Two classes are treated: first is the class consisting of f(z) = z + a2z2 + a3z3 + ⋯ in the unit disk 𝔻 satisfying $$\|\(\frac{z}{f(z)}\)^{1+{\alpha}}\;f^{\prime}(z)-1\|<{\lambda},\;0<{\alpha}<1,\;0<{\lambda}{\leq}1.$$ The second class consists of Bazilevič functions f(z) = z+a2z2+a3z3+⋯ in 𝔻 satisfying $$Re\{\(\frac{f(z)}{z}\)^{{\alpha}-1}\;f^{\prime}(z)\}>0,\;{\alpha}>0.$$
In this paper, a boundary version of the Schwarz lemma is investigated. We take into consideration a function $f(z)=z+c_{p+1}z^{p+1}+c_{p+2}z^{p+2}+{\cdots}$ holomorphic in the unit disc and $\|\frac{f(z)}{{\lambda}f(z)+(1-{\lambda})z}-{\alpha}\|$ < ${\alpha}$ for ${\mid}z{\mid}$ < 1, where $\frac{1}{2}$ < ${\alpha}$${\leq}{\frac{1}{1+{\lambda}}}$, $0{\leq}{\lambda}$ < 1. If we know the second and the third coefficient in the expansion of the function $f(z)=z+c_{p+1}z^{p+1}+c_{p+2}z^{p+2}+{\cdots}$, then we can obtain more general results on the angular derivatives of certain holomorphic function on the unit disc at boundary by taking into account $c_{p+1}$, $c_{p+2}$ and zeros of f(z) - z. We obtain a sharp lower bound of ${\mid}f^{\prime}(b){\mid}$ at the point b, where ${\mid}b{\mid}=1$.
In this paper, we study hash function, which will take a message of arbitrary length and produce a massage digest of a specified size. The message digest will then be signed. We have to be careful that the use of a hash function h does not weaken the security of the signature scheme, for it is the message digest that is signed, not the message. It will be necessary for h to satisfy certain properties in order to prevent various forgeries. In order to prevent various type of attack, we require that hash function satisfy collision-free property. In section 1, we introduce some definitions and collision-free properties of hash function. In section 2, we study a discrete log hash function and introduce the main theorem as follows : Theorem Suppose $h:X{\rightarrow}Z$ is a hash function. For any $z{\in}Z$, let $$h^{-1}(z)={\lbrace}x:h(x)=z{\rbrace}$$ and denote $s_z={\mid}h^{-1}(z){\mid}$. Define $$N={\mid}{\lbrace}{\lbrace}x_1,x_2{\rbrace}:h(x_1)=h(x_2){\rbrace}{\mid}$$. Then (1) $\sum\limits_{z{\in}Z}s_z={\mid}x{\mid}$ and the mean of the $s_z$'s is $\bar{s}=\frac{{\mid}X{\mid}}{{\mid}Z{\mid}}$ (2) $N=\sum\limits_{z{\in}Z}{\small{s_z}}C_2=\frac{1}{2}\sum\limits_{z{\in}Z}S_z{^2}-\frac{{\mid}X{\mid}}{2}$. (2) $\sum\limits_{z{\in}Z}(S_z-\bar{s})^2=2N+{\mid}X{\mid}-\frac{{\mid}X{\mid}^2}{{\mid}Z{\mid}}$.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.