Browse > Article
http://dx.doi.org/10.4134/BKMS.2016.53.2.325

INEQUALITIES FOR THE ANGULAR DERIVATIVES OF CERTAIN CLASSES OF HOLOMORPHIC FUNCTIONS IN THE UNIT DISC  

Ornek, Bulent Nafi (Department of Computer Engineering, Amasya University)
Publication Information
Bulletin of the Korean Mathematical Society / v.53, no.2, 2016 , pp. 325-334 More about this Journal
Abstract
In this paper, a boundary version of the Schwarz lemma is investigated. We take into consideration a function $f(z)=z+c_{p+1}z^{p+1}+c_{p+2}z^{p+2}+{\cdots}$ holomorphic in the unit disc and $\|\frac{f(z)}{{\lambda}f(z)+(1-{\lambda})z}-{\alpha}\|$ < ${\alpha}$ for ${\mid}z{\mid}$ < 1, where $\frac{1}{2}$ < ${\alpha}$ ${\leq}{\frac{1}{1+{\lambda}}}$, $0{\leq}{\lambda}$ < 1. If we know the second and the third coefficient in the expansion of the function $f(z)=z+c_{p+1}z^{p+1}+c_{p+2}z^{p+2}+{\cdots}$, then we can obtain more general results on the angular derivatives of certain holomorphic function on the unit disc at boundary by taking into account $c_{p+1}$, $c_{p+2}$ and zeros of f(z) - z. We obtain a sharp lower bound of ${\mid}f^{\prime}(b){\mid}$ at the point b, where ${\mid}b{\mid}=1$.
Keywords
Schwarz lemma on the boundary; holomorphic function; angular derivative; Julia-Wolff-Lemma;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 T. Aliyev Azeroglu and B. N. Ornek, A refined Schwarz inequality on the boundary, Complex Var. Elliptic Equ. 58 (2013), no. 4, 571-577.   DOI
2 V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. (N. Y.) 122 (2004), no. 6, 3623-3629.   DOI
3 V. N. Dubinin, Bounded holomorphic functions covering no concentric circles, J. Math. Sci. (N. Y.) 207 (2015), no. 6, 825-831.   DOI
4 G. M. Golusin, Geometric Theory of Functions of Complex Variable, 2nd edn., Moscow 1966.
5 M. Jeong, The Schwarz lemma and its application at a boundary point, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 21 (2014), no. 3, 219-227.
6 B. N. Ornek, Sharpened forms of the Schwarz lemma on the boundary, Bull. Korean Math. Soc. 50 (2013), no. 6, 2053-2059.   DOI
7 R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3513-3517.   DOI
8 Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.
9 H. Unkelbach, Uber die Randverzerrung bei konformer Abbildung, Math. Z. 43 (1938), no. 1, 739-742.   DOI