• Title/Summary/Keyword: Z-Map

Search Result 292, Processing Time 0.022 seconds

Effective Compression Technique for Secure Transmission and Storage of GIS Digital Map (GIS 디지털 맵의 안전한 전송 및 저장을 위한 효율적인 압축 기법)

  • Jang, Bong-Joo;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.2
    • /
    • pp.210-218
    • /
    • 2011
  • Generally, GIS digital map has been represented and transmitted by ASCII and Binary data forms. Among these forms, Binary form has been widely used in many GIS application fields for the transmission of mass map data. In this paper, we present a hierarchical compression technique of polyline and polygon components for effective storage and transmission of vector map with various degree of decision. These components are core geometric components that represent main layers in vector map. The proposed technique performs firstly the energy compaction of all polyline and polygon components in spatial domain for the lossless compression of detailed vector map and compress independently integer parts and fraction parts of 64bit floating points. From experimental results, we confirmed that the proposed technique has superior compressive performance to the conventional data compression of 7z, zip, rar and gz.

MINIMAL CLOZ-COVERS AND BOOLEAN ALGEBRAS

  • Kim, ChangIl
    • Korean Journal of Mathematics
    • /
    • v.20 no.4
    • /
    • pp.517-524
    • /
    • 2012
  • In this paper, we first show that for any space X, there is a Boolean subalgebra $\mathcal{G}(z_X)$ of R(X) containg $\mathcal{G}(X)$. Let X be a strongly zero-dimensional space such that $z_{\beta}^{-1}(X)$ is the minimal cloz-coevr of X, where ($E_{cc}({\beta}X)$, $z_{\beta}$) is the minimal cloz-cover of ${\beta}X$. We show that the minimal cloz-cover $E_{cc}(X)$ of X is a subspace of the Stone space $S(\mathcal{G}(z_X))$ of $\mathcal{G}(z_X)$ and that $E_{cc}(X)$ is a strongly zero-dimensional space if and only if ${\beta}E_{cc}(X)$ and $S(\mathcal{G}(z_X))$ are homeomorphic. Using these, we show that $E_{cc}(X)$ is a strongly zero-dimensional space and $\mathcal{G}(z_X)=\mathcal{G}(X)$ if and only if ${\beta}E_{cc}(X)=E_{cc}({\beta}X)$.

SUFFICIENT CONDITIONS AND RADII PROBLEMS FOR A STARLIKE CLASS INVOLVING A DIFFERENTIAL INEQUALITY

  • Swaminathan, Anbhu;Wani, Lateef Ahmad
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1409-1426
    • /
    • 2020
  • Let 𝒜n be the class of analytic functions f(z) of the form f(z) = z + ∑k=n+1 αkzk, n ∈ ℕ defined on the open unit disk 𝔻, and let $${\Omega}_n:=\{f{\in}{\mathcal{A}}_n:\|zf^{\prime}(z)-f(z)\|<{\frac{1}{2}},\;z{\in}{\mathbb{D}}\}$$. In this paper, we make use of differential subordination technique to obtain sufficient conditions for the class Ωn. Writing Ω := Ω1, we obtain inclusion properties of Ω with respect to functions which map 𝔻 onto certain parabolic regions and as a consequence, establish a relation connecting the parabolic starlike class 𝒮P and the uniformly starlike UST. Various radius problems for the class Ω are considered and the sharpness of the radii estimates is obtained analytically besides graphical illustrations.

COMPOSITION OPERATORS FROM HARDY SPACES INTO α-BLOCH SPACES ON THE POLYDISK

  • SONGXIAO LI
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.703-708
    • /
    • 2005
  • Let ${\varphi}(z)\;=\;({\varphi}_1(Z),{\cdots},{\varphi}_n(Z))$ be a holomorphic self­map of $\mathbb{D}^n$, where $\mathbb{D}^n$ is the unit polydisk of $\mathbb{C}^n$. The sufficient and necessary conditions for a composition operator to be bounded and compact from the Hardy space $H^2(\mathbb{D}^n)$ into $\alpha$-Bloch space $\beta^{\alpha}(\mathbb{D}^n)$ on the polydisk are given.

ON ℤpp[u]/k>-CYCLIC CODES AND THEIR WEIGHT ENUMERATORS

  • Bhaintwal, Maheshanand;Biswas, Soumak
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.571-595
    • /
    • 2021
  • In this paper we study the algebraic structure of ℤpp[u]/k>-cyclic codes, where uk = 0 and p is a prime. A ℤpp[u]/k>-linear code of length (r + s) is an Rk-submodule of ℤrp × Rsk with respect to a suitable scalar multiplication, where Rk = ℤp[u]/k>. Such a code can also be viewed as an Rk-submodule of ℤp[x]/r - 1> × Rk[x]/s - 1>. A new Gray map has been defined on ℤp[u]/k>. We have considered two cases for studying the algebraic structure of ℤpp[u]/k>-cyclic codes, and determined the generator polynomials and minimal spanning sets of these codes in both the cases. In the first case, we have considered (r, p) = 1 and (s, p) ≠ 1, and in the second case we consider (r, p) = 1 and (s, p) = 1. We have established the MacWilliams identity for complete weight enumerators of ℤpp[u]/k>-linear codes. Examples have been given to construct ℤpp[u]/k>-cyclic codes, through which we get codes over ℤp using the Gray map. Some optimal p-ary codes have been obtained in this way. An example has also been given to illustrate the use of MacWilliams identity.

Homotopical triviality of entire rational maps to even dimensional spheres

  • Suh, Dong-Youp
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.807-814
    • /
    • 1996
  • Let $G = Z_2$. Let X be any compact connected orientable nonsingular real algebraic variety of dim X = k = odd with the trivial G action, and let Y be the unit sphere $S^{2n-k}$ with the antipodal action of G. Then we prove that any G invariant entire rational map $f : x \times Y \to S^{2n}$ is G homotopically trivial. We apply this result to prove that any entire rational map $g : X \times RP^{2n-k} \to S^{2n}$ is homotopically trivial.

  • PDF

On the Properties of Scaling Exponents for the Dissipative System (소모계에서 축척지수의 성질에 관한 고찰)

  • Kim, Gyeong-Sik;Sin, Sang-Yeol;Kim, Si-Yong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.2
    • /
    • pp.162-167
    • /
    • 1993
  • We have investigated analytically and numerically on both the generalized dimension D sub(n) and the fractal dimensionality f sub($\alpha$) in the dissipative Willbrink map. and discussed both the mode-locking phenomenon and the dissipative trajectory when z=0.03, b=0.9 and K sub(d) =0.272313668. In the mode-locking phenomenon. we find that the generalized dimension D sub(-n) and superconverged $\delta$ sub(n) are very close to D sub(-$\infty$) =0.92403 and $\delta$ sub($\infty$) =2.16442 even for n~20 as listed in Table 1. In dissipative trajectory, the values of D sub(+n) and D sub(-n) for n~20 are estimated to be very close to D sub(+$\infty$) =0.63267 and D sub(-$\infty$) =1.89802 on the circle map. Thus, the values of the generalized dimension as nlongrightarrow$\infty$ on dissipative Willbrink map are expected to be the same results as those for the circle map and to have the universal scaling exponents for a special scaling structure when the values of overbar(w), z, b, and k sub(d) have the different values.

  • PDF

Development of Map Building Algorithm for Mobile Robot by Using RFID (모바일 로봇에서 RFID를 이용한 지도작성 알고리즘 개발)

  • Kim, Si-Seup;Seon, Jeong-An;Kee, Chang-Doo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.133-138
    • /
    • 2011
  • RFID system can be used to improve object recognition, map building and localization for robot area. A novel method of indoor navigation system for a mobile robot is proposed using RFID technology. The mobile robot With a RFID reader and antenna is able to find what obstacles are located where in circumstance and can build the map similar to indoor circumstance by combining RFID information and distance data obtained from sensors. Using the map obtained, the mobile robot can avoid obstacles and finally reach the desired goal by $A^*$ algorithm. 3D map which has the advantage of robot navigation and manipulation is able to be built using z dimension of products. The proposed robot navigation system is proved to apply for SLAM and path planning in unknown circumstance through numerous experiments.

길이가 16인 Z$_4$위의 Preparata 부호는 연쇄조건을 만족하지 않는다

  • Kyeongcheol Yang;Dooroo Lim
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1996.11a
    • /
    • pp.286-294
    • /
    • 1996
  • In a remarkable paper 〔3〕, Hammons et al. showed that, when properly defined, the binary nonlinear Preparata code can be considered as the Gray map of a linear code eve. Z$_4$, the so-called Preparata code eve. Z$_4$. Recently, Yang and Helleseth 〔12〕 considered the generalized Hamming weights d$\_$r/(m) for Preparata codes of length 2$\^$m/ over Z$_4$ and exactly determined d$\_$r/, for r = 0.5,1.0,1.5,2,2.5 and 3.0. In particular, they completely determined d$\_$r/(m) for any r in the case of m $\leq$ 6. In this paper we show that the Preparata code of length 16 over Z$_4$ does not satisfy the chain condition.

  • PDF

Finding an Intersection Point between Cutter Swept Surface with a Z-Direction Vector (공구 이동 궤적면과 Z-direction 벡터의 교차점 계산)

  • Park, Pae-Yong;Ahn, Jeong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.235-239
    • /
    • 2001
  • Finding intersection point between a surface and a line is one of major problem in CAD/CAM. The intersection point could be found in an exact form or with numerical method. In this paper, the exact solution of the intersection point between a ruled surface which is generated by the movement of an endmill and the z-direction vector is presented. The cutter swept surface which is a ruled surface and the Z-direction vector are represented with parametric equations. With the nature of parametric equations, the geometric properties at the intersection point are easily acquired.

  • PDF