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COMPOSITION OPERATORS FROM HARDY SPACES
INTO o-BLOCH SPACES ON THE POLYDISK

L1 SoNgXx1AO

ABSTRACT. Let ¢(z) = (p1(2),- - -, ¥n(z)) be a holomorphic self-
map of D™, where D™ is the unit polydisk of C". The sufficient and
necessary conditions for a composition operator to be bounded and
compact from the Hardy space H*(D™) into a-Bloch space B*(D™)
on the polydisk are given.

1. Introduction

Let D™ be the unit polydisk of C" and the class of all holomorphic
functions with domain D" will be denoted by H(D"). Let ¢ be a holo-
morphic self-map of D" and the composition operator C, induced by
¢ is defined by (C,f)(z) = f(p(z)) for z in D™ and f € H(D"). It is
interesting to characterize the composition operator on various analytic
function spaces, the book [1] contains plenty of information.

Let 0 < a, a function f holomorphic in D™ is said to belong to the
o-Bloch space B*(D") if

7l = £+ swp 2L (10— fz42)® < 4oo,
zeDm 1= <k

It is easy to show that B*(D") is a Banach space with the above norm
I lla-

For z,w € C", write z - w = (zywy, - - -, Zntwy), €0 = (&1 ... ein),
When we write 0 < r < 1, where r = (rq,- -+, r,), means 0 < r; < 1(i =
1,---,n). The Hardy space H?(D") is defined on D" by

HP = HP(D") = {f € H(D"), ||fllp < oo},
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where

1 0\ |p
= ——7T— Su r- dt dtn
171z (2m)n 0<7‘El /[0,27r]" r- el

When p = 2, the Hardy space H2(D") is a Hilbert space whose repro-
ducing kernel and the normalized reproducing kernel are respectively

1 _ Ieea (0 — a2

Kalz) = [Tei (1 —ag2e)’ al2) = [Th=1 (1 — @r2x)

About the details of the Hardy space on polydisk, you can refer Rudin’s
book([3]).

Recently, in the setting of unit disk, Pérez-Gonzdlez and Xiao studied
composition operators from the Hardy space into the Bloch space in
[2]. In the several complex variable case, Shi and Luo first studied
Composition operator on the Bloch space in [4], then Zhou and Shi
studied composition operator on the Bloch space on the polydisk in [5]
and [6]. In this paper, we study the boundedness and compactness of
composition operators from the Hardy space into the a-Bloch space in
the setting of polydisk. In this paper, C always denote positive constant
and may be different at different occurrences.

2. Main results and proof

In this section, we give our main results and their proofs:

THEOREM 2.1 Let p(2) = (¢1(2),: - -, pn(2)) be a holomorphic self-
map of D", then C,, : H*(D") — B*(D") is bounded if and only if there
exists a constant M > 0, such that for any z € D",

n

(2'1) Z |-8—(P£(Z)|( (1 - Izk’2)o¢

<
205, ATl =
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PROOF. Suppose that (2.1) holds. For a function f € H? and 2z € D",
we have

k=1
< S S ISR I - e

k=1 1l=1

n n — |z PAY-"
DI ACE >>H§f}j< g (1= ()

3% (1— |z®)™
< C|fl2 ];1! T TG PPo

< CM|fl2.

Therefore C, : H?(D") — BY(D") is bounded.
Conversely, suppose that C, : H2(D") — B%(D") is bounded, then for
any f € H*(D"), we have ||C,f|la < C||f|l2. For any fixed I(1 <1 < n)

and w € D, let
V1= |w?
fulz) = T wn
It is easy to check that f,, € H?(D") and therefore ||Cy fulla < C|l fuwllz =
C,ie.,

Y _('0 2yex % <C
> g @I~ ) G e <
For any z € D", replacing w in the above inequality with ¢;(z), we get
8 1 — |z |%)

(1 - lei(2)[2)32 ~

Consequently, by the above arguments, we have

3@1 (1—|z)?)°
<C
,fl:'% 1 —[a(=)PP? =

for any z € D". O

Next, we characterize compact composition operator C,, : H*(D") —
B*(D™). Before we give the second main result, we give some lemmas
as following:
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LEMMA 2.2 Suppose f € H?(D"), then for z = (21, 22, ..., zn) € D",

&< Wl Y =

LEMMA 2.3 Let ¢(2) = (p1(2), -, ¥n(2)) be a holomorphic self-map
of D", then C, : H?(D") — B*(D") is compact if and only if whenever
{f;} is bounded in H?(D") and f; — O uniformly on compact subsets
of D*, then C,f; — 0 in B*(D").

PRrOOF. Using Lemma 2.2 and Montel theorem, modify the proof of
the Proposition 3.11 in [1], we can give the proof. Since the proof is
routine, we omit it. . L

THEOREM 2.4 Let ¢(2) = (¢1(2), - -, pn(2)) be a holomorphic self-
map of D", then C,, : H*(D") — B*(D") is compact if and only if for
any ¢ > 0, there exists a constant 6 > 0 such that for any z € D" and
dist(p(z),0D™) < &, the following inequality is satisfied

2 1— |2z|2)™
& 2 T T

PROOF. First, suppose that (2.2) holds. Let {f;} are satisfied

(a) [[fillz < MG =1,2,...),
(b) f; — 0 uniformly on compact subsets of D".
By Lemma, 2.3, we only need to prove ||fj o ¢|la — 0. In fact

(f] o p)

> o | - lal)e
k=1
< 33| | @ a - by
(23 i ! k
< ;z}—; éjl(cp(z ‘ 82 I(l |(Pl|zk||3)3/2( 1—|gi(2)[%)*?
L |8er (1—|%f?)
<1l 3 | F

By (a), (b) and (2.2), we know that when dist(¢(z),0D") < 4,

(2.4) Z
k=

— |zk]?)® < Ce.

f]o‘P ‘
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Let K = {w € D" : dist(w,dD™) > 6}, then it is obvious that K is
compact subset of D™. By (b), for every [ = 1,2....n, g—ﬁ — 0 uniformly
on K. Therefore,

(2.5) >

k=1

A(fj o)
Oz

\ (1= 2% = 0

is uniformly on dist(y(z),0D™) > §. Consequently, by (2.4) and (2.5),
we get

1ol = 11O+ sup 5| 2EEE) (1 — oy — o
k=1

zeDn _

Therefore by Lemma 2.3, we see that C, : H*(D") — B*(D") is com-
pact.

Conversely, suppose that C, : H 2(D") — B*(D") is compact. Let
A™ be a sequence in D™ such that ¢(A™) — ID™ as m — oo. Let
w™ = @(A™) = (Wi, wh,...,w™) and without loss of generality, we
assume that [ is a positive integer with |w®| — 1 as m — oco. We take

functions
/1 — w2
fma(z) = —‘—l i .

1-— ’LUlle

Then it is obvious that f,,; is bounded and convergence to 0 uniformly
on compact subsets of D". By Lemma 2.3, ||Cy fmlla — 0. By some
computations, we get

(1= Py
PR

I
O™

—0 as m — oc.

o)
Repeating the above arguments, we can get

%( m)l (1- \AmkP)a
OX? (1 =l (m)[2)3/2

n

2

k=1

Therefore, for any z € D" such that dist(p(z), 0D") < §, we have

7

>

k=1

dor (1 — |z]?)>
— < .
Dz, ’ (1= lp(z)2)32 =

The conclusion follows. O
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