COMPOSITION OPERATORS FROM HARDY SPACES INTO α -BLOCH SPACES ON THE POLYDISK

Li Songxiao

ABSTRACT. Let $\varphi(z) = (\varphi_1(z), \dots, \varphi_n(z))$ be a holomorphic self-map of \mathbb{D}^n , where \mathbb{D}^n is the unit polydisk of \mathbb{C}^n . The sufficient and necessary conditions for a composition operator to be bounded and compact from the Hardy space $H^2(\mathbb{D}^n)$ into α -Bloch space $\mathcal{B}^{\alpha}(\mathbb{D}^n)$ on the polydisk are given.

1. Introduction

Let \mathbb{D}^n be the unit polydisk of \mathbb{C}^n and the class of all holomorphic functions with domain \mathbb{D}^n will be denoted by $H(\mathbb{D}^n)$. Let φ be a holomorphic self-map of \mathbb{D}^n and the composition operator C_{φ} induced by φ is defined by $(C_{\varphi}f)(z) = f(\varphi(z))$ for z in \mathbb{D}^n and $f \in H(\mathbb{D}^n)$. It is interesting to characterize the composition operator on various analytic function spaces, the book [1] contains plenty of information.

Let $0 < \alpha$, a function f holomorphic in \mathbb{D}^n is said to belong to the α -Bloch space $\mathcal{B}^{\alpha}(\mathbb{D}^n)$ if

$$||f||_{\alpha} = |f(0)| + \sup_{z \in \mathbb{D}^n} \sum_{k=1}^n |\frac{\partial f}{\partial z_k}(z)| (1 - |z_k|^2)^{\alpha} < +\infty.$$

It is easy to show that $\mathcal{B}^{\alpha}(\mathbb{D}^n)$ is a Banach space with the above norm $\|\cdot\|_{\alpha}$.

For $z, w \in \mathbb{C}^n$, write $z \cdot w = (z_1 w_1, \dots, z_n w_n)$, $e^{i\theta} = (e^{i\theta_1}, \dots, e^{i\theta_n})$. When we write $0 \le r < 1$, where $r = (r_1, \dots, r_n)$, means $0 \le r_i < 1$ ($i = 1, \dots, n$). The Hardy space $H^p(\mathbb{D}^n)$ is defined on \mathbb{D}^n by

$$H^p = H^p(\mathbb{D}^n) = \{ f \in H(\mathbb{D}^n), \|f\|_p < \infty \},$$

Received January 13, 2005.

2000 Mathematics Subject Classification: Primary 47B35; Secondary 30H05. Key words and phrases: composition operator, Hardy space, α -Bloch space. The author is partially supported by NNSF(10371051) and ZNSF(102025).

where

$$||f||_p = \frac{1}{(2\pi)^n} \sup_{0 \le r < 1} \int_{[0,2\pi]^n} |f(r \cdot e^{i\theta})|^p dt_1 \cdot \cdot \cdot dt_n.$$

When p=2, the Hardy space $H^2(\mathbb{D}^n)$ is a Hilbert space whose reproducing kernel and the normalized reproducing kernel are respectively

$$K_a(z) = \frac{1}{\prod_{k=1}^n (1 - \overline{a_k} z_k)}, \quad k_a(z) = \frac{\prod_{k=1}^n (1 - |a_k|^2)^{1/2}}{\prod_{k=1}^n (1 - \overline{a_k} z_k)}.$$

About the details of the Hardy space on polydisk, you can refer Rudin's book([3]).

Recently, in the setting of unit disk, Pérez-González and Xiao studied composition operators from the Hardy space into the Bloch space in [2]. In the several complex variable case, Shi and Luo first studied Composition operator on the Bloch space in [4], then Zhou and Shi studied composition operator on the Bloch space on the polydisk in [5] and [6]. In this paper, we study the boundedness and compactness of composition operators from the Hardy space into the α -Bloch space in the setting of polydisk. In this paper, C always denote positive constant and may be different at different occurrences.

2. Main results and proof

In this section, we give our main results and their proofs:

THEOREM 2.1 Let $\varphi(z) = (\varphi_1(z), \dots, \varphi_n(z))$ be a holomorphic selfmap of \mathbb{D}^n , then $C_{\varphi} : H^2(\mathbb{D}^n) \to \mathcal{B}^{\alpha}(\mathbb{D}^n)$ is bounded if and only if there exists a constant M > 0, such that for any $z \in \mathbb{D}^n$,

(2.1)
$$\sum_{k,l=1}^{n} \left| \frac{\partial \varphi_{l}}{\partial z_{k}}(z) \right| \frac{(1-|z_{k}|^{2})^{\alpha}}{(1-|\varphi_{l}(z)|^{2})^{3/2}} \leq M.$$

PROOF. Suppose that (2.1) holds. For a function $f \in H^2$ and $z \in \mathbb{D}^n$, we have

$$\begin{split} &\sum_{k=1}^{n} |\frac{\partial (f \circ \varphi)}{\partial z_{k}}|(1-|z_{k}|^{2})^{\alpha} \\ &\leq \sum_{k=1}^{n} \sum_{l=1}^{n} |\frac{\partial f}{\partial w_{l}}(\varphi(z))||\frac{\partial \varphi_{l}}{\partial z_{k}}(z)|(1-|z_{k}|^{2})^{\alpha} \\ &\leq \sum_{k=1}^{n} \sum_{l=1}^{n} |\frac{\partial f}{\partial w_{l}}(\varphi(z))||\frac{\partial \varphi_{l}}{\partial z_{k}}(z)|\frac{(1-|z_{k}|^{2})^{\alpha}}{(1-|\varphi_{l}(z)|^{2})^{3/2}}(1-|\varphi_{l}(z)|^{2})^{3/2} \\ &\leq C ||f||_{2} \sum_{k,l=1}^{n} |\frac{\partial \varphi_{l}}{\partial z_{k}}(z)|\frac{(1-|z_{k}|^{2})^{\alpha}}{(1-|\varphi_{l}(z)|^{2})^{3/2}} \\ &\leq C M ||f||_{2}. \end{split}$$

Therefore $C_{\varphi}: H^2(\mathbb{D}^n) \to \mathcal{B}^{\alpha}(\mathbb{D}^n)$ is bounded.

Conversely, suppose that $C_{\varphi}: H^2(\mathbb{D}^n) \to \mathcal{B}^{\alpha}(\mathbb{D}^n)$ is bounded, then for any $f \in H^2(\mathbb{D}^n)$, we have $\|C_{\varphi}f\|_{\alpha} \leq C\|f\|_2$. For any fixed $l(1 \leq l \leq n)$ and $w \in \mathbb{D}$, let

$$f_w(z) = \frac{\sqrt{1 - |w|^2}}{1 - \overline{w}z_l}.$$

It is easy to check that $f_w \in H^2(\mathbb{D}^n)$ and therefore $||C_{\varphi}f_w||_{\alpha} \leq C||f_w||_2 = C$, i.e.,

$$\sum_{k=1}^{n} \left| \frac{\partial \varphi_l}{\partial z_k}(z) \right| (1 - |z_k|^2)^{\alpha} \left| \frac{\partial f_w}{\partial w_l}(\varphi(z)) \right| \le C.$$

For any $z \in \mathbb{D}^n$, replacing w in the above inequality with $\varphi_l(z)$, we get

$$\sum_{k=1}^{n} |\varphi_l(z)| \frac{\partial \varphi_l}{\partial z_k}(z) \left| \frac{(1-|z_k|^2)^{\alpha}}{(1-|\varphi_l(z)|^2)^{3/2}} \right| \le C.$$

Consequently, by the above arguments, we have

$$\sum_{k,l=1}^{n} \left| \frac{\partial \varphi_{l}}{\partial z_{k}}(z) \right| \frac{(1-|z_{k}|^{2})^{\alpha}}{(1-|\varphi_{l}(z)|^{2})^{3/2}} \le C$$

for any $z \in \mathbb{D}^n$.

Next, we characterize compact composition operator $C_{\varphi}: H^2(\mathbb{D}^n) \to \mathcal{B}^{\alpha}(\mathbb{D}^n)$. Before we give the second main result, we give some lemmas as following:

LEMMA 2.2 Suppose $f \in H^2(\mathbb{D}^n)$, then for $z = (z_1, z_2, ..., z_n) \in \mathbb{D}^n$,

$$|f(z)| \le ||f||_2 \sum \frac{1}{(1-|z_i|^2)^{1/2}}.$$

LEMMA 2.3 Let $\varphi(z) = (\varphi_1(z), \dots, \varphi_n(z))$ be a holomorphic self-map of \mathbb{D}^n , then $C_{\varphi}: H^2(\mathbb{D}^n) \to \mathcal{B}^{\alpha}(\mathbb{D}^n)$ is compact if and only if whenever $\{f_j\}$ is bounded in $H^2(\mathbb{D}^n)$ and $f_j \to 0$ uniformly on compact subsets of \mathbb{D}^n , then $C_{\varphi}f_j \to 0$ in $\mathcal{B}^{\alpha}(\mathbb{D}^n)$.

PROOF. Using Lemma 2.2 and Montel theorem, modify the proof of the Proposition 3.11 in [1], we can give the proof. Since the proof is routine, we omit it. \Box

THEOREM 2.4 Let $\varphi(z) = (\varphi_1(z), \dots, \varphi_n(z))$ be a holomorphic selfmap of \mathbb{D}^n , then $C_{\varphi} : H^2(\mathbb{D}^n) \to \mathcal{B}^{\alpha}(\mathbb{D}^n)$ is compact if and only if for any $\epsilon > 0$, there exists a constant $\delta > 0$ such that for any $z \in \mathbb{D}^n$ and $\operatorname{dist}(\varphi(z), \partial \mathbb{D}^n) < \delta$, the following inequality is satisfied

(2.2)
$$\sum_{k,l=1}^{n} \left| \frac{\partial \varphi_l}{\partial z_k}(z) \right| \frac{(1-|z_k|^2)^{\alpha}}{(1-|\varphi_l(z)|^2)^{3/2}} \le \epsilon.$$

PROOF. First, suppose that (2.2) holds. Let $\{f_j\}$ are satisfied

- (a) $||f_j||_2 \leq M(j=1,2,...),$
- (b) $f_j \to 0$ uniformly on compact subsets of \mathbb{D}^n .

By Lemma 2.3, we only need to prove $||f_j \circ \varphi||_{\alpha} \to 0$. In fact

$$\sum_{k=1}^{n} \left| \frac{\partial (f_{j} \circ \varphi)}{\partial z_{k}} \right| (1 - |z_{k}|^{2})^{\alpha}$$

$$\leq \sum_{k=1}^{n} \sum_{l=1}^{n} \left| \frac{\partial f_{j}}{\partial w_{l}} (\varphi(z)) \right| \left| \frac{\partial \varphi_{l}}{\partial z_{k}} (z) \right| (1 - |z_{k}|^{2})^{\alpha}$$

$$\leq \sum_{k=1}^{n} \sum_{l=1}^{n} \left| \frac{\partial f_{j}}{\partial w_{l}} (\varphi(z)) \right| \left| \frac{\partial \varphi_{l}}{\partial z_{k}} (z) \right| \frac{(1 - |z_{k}|^{2})^{\alpha}}{(1 - |\varphi_{l}(z)|^{2})^{3/2}} (1 - |\varphi_{l}(z)|^{2})^{3/2}$$

$$\leq \|f_{j}\|_{2} \sum_{k,l=1}^{n} \left| \frac{\partial \varphi_{l}}{\partial z_{k}} (z) \right| \frac{(1 - |z_{k}|^{2})^{\alpha}}{(1 - |\varphi_{l}(z)|^{2})^{3/2}}.$$

By (a), (b) and (2.2), we know that when $dist(\varphi(z), \partial \mathbb{D}^n) < \delta$,

(2.4)
$$\sum_{k=1}^{n} \left| \frac{\partial (f_{j} \circ \varphi)}{\partial z_{k}} \right| (1 - |z_{k}|^{2})^{\alpha} \leq C\epsilon.$$

Let $K = \{w \in \mathbb{D}^n : \operatorname{dist}(w, \partial \mathbb{D}^n) \geq \delta\}$, then it is obvious that K is compact subset of \mathbb{D}^n . By (b), for every $l = 1, 2..., n, \frac{\partial f_j}{\partial w_l} \to 0$ uniformly on K. Therefore,

(2.5)
$$\sum_{k=1}^{n} \left| \frac{\partial (f_j \circ \varphi)}{\partial z_k} \right| (1 - |z_k|^2)^{\alpha} \to 0$$

is uniformly on $\operatorname{dist}(\varphi(z), \partial \mathbb{D}^n) \geq \delta$. Consequently, by (2.4) and (2.5), we get

$$||C_{\varphi}f_j||_{\alpha} = |f_j(\varphi(0))| + \sup_{z \in \mathbb{D}^n} \sum_{k=1}^n \left| \frac{\partial (f_j \circ \varphi)}{\partial z_k} \right| (1 - |z_k|^2)^{\alpha} \to 0.$$

Therefore by Lemma 2.3, we see that $C_{\varphi}: H^2(\mathbb{D}^n) \to \mathcal{B}^{\alpha}(\mathbb{D}^n)$ is compact.

Conversely, suppose that $C_{\varphi}: H^2(\mathbb{D}^n) \to \mathcal{B}^{\alpha}(\mathbb{D}^n)$ is compact. Let λ^m be a sequence in \mathbb{D}^n such that $\varphi(\lambda^m) \to \partial \mathbb{D}^n$ as $m \to \infty$. Let $w^m = \varphi(\lambda^m) = (w_1^m, w_2^m, ..., w_n^m)$ and without loss of generality, we assume that l is a positive integer with $|w_l^m| \to 1$ as $m \to \infty$. We take functions

$$f_{m,l}(z) = \frac{\sqrt{1 - |w_l^m|^2}}{1 - \overline{w_l^m} z_l}.$$

Then it is obvious that $f_{m,l}$ is bounded and convergence to 0 uniformly on compact subsets of \mathbb{D}^n . By Lemma 2.3, $\|C_{\varphi}f_{m,l}\|_{\alpha} \to 0$. By some computations, we get

$$\left| \frac{\partial \varphi_l}{\partial \lambda^m_k} (\lambda^m) \right| \frac{(1 - |\lambda^m_k|^2)^{\alpha}}{(1 - |\varphi_l(\lambda^m)|^2)^{3/2}} \to 0 \quad \text{as} \quad m \to \infty.$$

Repeating the above arguments, we can get

$$\sum_{k,l=1}^{n} \left| \frac{\partial \varphi_l}{\partial \lambda_k^m} (\lambda^m) \right| \frac{(1 - |\lambda^m_k|^2)^{\alpha}}{(1 - |\varphi_l(\lambda^m)|^2)^{3/2}} \to 0.$$

Therefore, for any $z \in \mathbb{D}^n$ such that $\operatorname{dist}(\varphi(z), \partial \mathbb{D}^n) < \delta$, we have

$$\sum_{k,l=1}^{n} \left| \frac{\partial \varphi_l}{\partial z_k}(z) \right| \frac{(1-|z_k|^2)^{\alpha}}{(1-|\varphi_l(z)|^2)^{3/2}} \le \epsilon.$$

The conclusion follows.

References

- [1] C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, 1995.
- [2] F. Pérez-González and J. Xiao, Bloch-hardy pullbacks, Acta. Sci. Math.(Szeged) 67 (2001), 709–718.
- [3] W. Rudin, Function theory in polydiscs, New York, W. A. Benjamin, 1969.
- [4] J. H. Shi and L. Luo, Composition operators on the Bloch space of several complex variable, Acta. Math. Sinica, English series, 16(2000), 85-98.
- [5] Z. H. Zhou and J. H. Shi, Composition operators on the Bloch space in polydiscs, Complex Var. Theory Appl. 46 (2001), no. 1, 73-88.
- [6] _____, Compact composition operators on the Bloch space in polydisk, Sci. China Ser. A 31 (2001), no. 2, 111–116.
- [7] Z. H. Zhou and S. B. Zeng, Composition operators on the Lipschitz space in polydisc, Sci. China Ser. A 32 (2002), no. 5, 385–389.
- [8] K. Zhu, Operator theory on function spaces, Marcel Dekker, New York and Basel, 1990.

Department of Mathematics JiaYing University Meizhou 514015, GuangDong, China E-mail: lsx@mail.zjxu.edu.cn