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HOMOTOPICAL TRIVIALITY OF ENTIRE RATIONAL
MAPS TO EVEN DIMENSIONAL SPHERES

DonNG Your Sun

ABSTRACT. Let G = Z3. Let X be any compact connected orientable
nonsingular real algebraic variety of dim X = k =odd with the trivial G
action, and let Y be the unit sphere S2"~% with the antipodal action of
G. Then we prove that any G invarinat entire rational map f : X xY —
§2" is G homotopically trivial. We apply this result to prove that any
entire rational map g : X x RP??~% _. §2% is homotopically trivial.

1. Introduction

A real algebraic variety is the common zero set of polynomials f; :
R" - R,¢=1,--- ,k. Amap f: X — Y between two algebraic varieties
X CR"™and Y C R™ is called a regular map if there exists a polynomial
f:R®™ - R™ such that f = P|x. A map f: X — Y is entire rational
if there are polynomials P : R® — R™ and Q : R® — R such that
Q™ '(0)NY =0 and f = P/Q on X. One of the interesting problems
concerning entire rational maps is to determine homotopy types of entire
rational maps between given two real algebraic varieties. Bocknak and
Kucharz study the problem in [BoKu79], [BoKu87] and [BoKu88] for
the case when the target spaces are spheres. The following theorem
of Bocknak and Kucharz shows a striking difference between homotopy
types of entire rational maps and those of smooth or continuous maps.
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THEOREM 1.1. [2] Let X be a nonsingular real algebraic variety of
odd dimension k. Assume that X is compact connected and orientable
as a smooth manifold. If k < 2n, then every entire rational map from
X x 8%~k to §%" is homotopically trivial.

In this paper we prove the following equivariant analogue of the above
theorem.

THEOREM 1.2. Let G = Zy be the order two group. Let X be a
nonsingular real algebraic variety of odd dimensior. k with the trivial G
action. Assume that X is compact connected and orientable as a smooth
manifold. Let Y be the sphere S*"~* on which the nontrivial element
of G acts as the antipodal map. If k < 2n, then every entire rational G
map from X x Y to S?" is G homotopically trivial

Using Theorem 1.2 we are able to prove the following nonequivariant
result.

THEOREM 1.3. Let X be a nonsingular real algebraic variety of di-
mension k with odd k. Assume that X is compact connected and ori-
entable as a smooth manifold. If k < 2n, then everv entire rational map
from X x RP?"~* to §?" is homotopically trivial.

In [3] Bochnak and Kucharz have introduced a subring HIE_alg(Z 1 Z)
of the cohomology ring of a real algebraic variety Z, which is defined
using concepts from complex algebraic geometry such as Chow cohomol-
ogy ring. They also find several properties of H%_,, (Z : Z). Using these
properties one can prove Theorem 1.3 . However in this paper we give a
different proof of Theorem 1.3 using only Theorem 1.2 .

2. Proof of main results

Let G = Z;,andlet 0 £ g € Gacton Y = S"! as the antipodal map.
Topologically the orbit space Y/G is homeomorphic to the real projective
space RP"~! and the orbit map 7 : ¥ — Y/G is continuous. The
following lemma shows that we can give a similar argument algebraically.
Note that the real projective space RP™~! is a nons:ngular real algebraic
variety by the the following identification.

RP"™ ={LeMn.R)|L*=L=L"trL =1}
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where M(n,R) is the variety of all n x n real matrices.

LEMMA 2.1. Let G = Z3. Let 0 # g € G act on Y = S™ ! as the
antipodal map. Then there exists a surjective G invariant entire rational
map p: Y — RP™! and a homeomorphism 1 : Y/G — RP™"! such
that Y onr = p.

PROOF. Let R[z1,...,z,] denote the R-algebra of the real polynomi-
als on n variables, and let R[S™!]% denote the R-algebra of G invariant
regular maps on S™7!'. Then R[S"!]% is generated by the polynomials
tij == zir; € Rlzq,... ,z,] for 0 <7 < j < n. The polynomial relations
of t;; are generated by the following equations:

n
Y tu=1
i=1
(tz']')2 :tiitjj for 1 SZ<_] <n
2
We now consider the map p': ¥ — R™5™" defined by

p,(:rla--- «,xn) - (t117t127--' at1n7t237"' 1t2nv--- 7tnn)-

Let (211,212,-++ y21n, 223, -+ y 220+ - - , 2nn) denote the coordinate sys-
nzin nzj:n . .
tem of R"2 . Let Z C R" 2z be the algebraic variety defined by the
polynomials
1=1

(z,-]-)2 = Ziizj; for 1<i<j<n
Let ¢ : Z — RP™! be the map which maps the point

(211,212, -+ s 210y 2235+« 4 2205+ - > Znn)

to the symmetric matrix L whose (7, j)-entries are z;; for 1 <1 < j < n.
Namely,
11 %12 't ZIn

212 %22 " Z2n
¢(2117' . ,Znn) =

2 v Znn

ot
— e
3
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Then it is an elementary check to see that the map ¢ is an isomorphism.
Note that p' is clearly a G invariant map onto Z, and hence there is a
homeomorphism p : Y/G — Z such that p’ = po 1. Let p = ¢ o p' and
¥ = ¢ o p. Then they are the desired maps.

LEMMA 2.2. Let G, Y, p, and ¢ be as in Lemma 2.1. For any real
algebraic varieties X and Z with the trivial G act:on and a G invariant
entire rational map f : X x Y — Z there exists a iinique entire rational
map g : X x RP™ ! — Z such that f = g o (Id xp).

PROOF. It is enough to prove the theorem when Z = R. We first
claim that any G mvariant regular map f : X x Y -+ R can be expressed
as f =3 fig: where f; : X — R are regular maps on X and ¢, : ¥ - R
are G invrariant regular maps on Y. Since f is G .nvariant

fla.y) = 5(F(r.p) + fla.—y)

for (z,y) € X x Y. On the other hand it is clear that f = Z—f:ﬁ; for
some regular maps f; : X — R and 7 : ¥ — R. Thus we have

!

Y (F()F(y) + Fila)@ —y)

fl

PO — 83—

Il

!
] ™
-
2
S
S

=
[V

(Ti(y) + 7i(—y))

where f; = f; and ¢;(y) = Ti(y) + §i(—y). It is clear that g; are G
invariant regular maps. This proves the first claim. We now prove
the special case of the lemma with all entire rational maps replaced by
regular maps. Since R[Y]¢ is generated by ti; (see the proof of Lemma
2.1) for any G invariant regular map g : ¥ — R there exists a polynomial
h such that g(y) = h(t11(y),t12(¥), ... .tan(y)). Let f: X x Y — R be
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a given G invariant polynomial map. Then for (z,y) € X x Y we have

(z.y) =Y filzx)gily
=D fil@hiltin(y), tia(), - tan(y))
= fi@)hilp(y))
= () _ fihi) o (Id xp)(z,y)

Thus if we let ¢ = }_ fih; then g is a regular map such that f = go
(Id xp). This proves the special case. We now prove the general case. Let
f: X xY — Rbe a G invariant entire rational map. From the definition
of entire rational map there exists polynomials P and @ such that Q does
not vanish on X xY and f = P/Q on X x Y. Since f is G invariant
we may assume that both P and @ are G invariant, see Proposition 2.5
of [DMS94]. From the previous special case there exists polynomials P
and @ such that P = P o (Id xp) and Q = Q o (Id xp). Since Q~1(0) =
(Id xp)~—! oa_l(()), if there exists z € 6_1(0) N(X x RP™™1), then there
exists w € (Id xp)~'(z). This shows that Q(w) = 0 for some w € X x Y,
which is a contradiction. Therefore Q) does not vanish on X x RP"!,
Now let ¢ = P/Q. Then clearly ¢ is an entire rational map such that
f =g o(Id xp). The uniqueness of ¢ is obvious.

We are now ready to prove Theorem 1.2. We first prove the following
special case.

LEMMA 2.3. Let X be a nonsingular real algebraic varieties of di-
mension 2n — 1. Assume X is compact connected and orientable as a
smooth manifold. Let G = Zj act trivially on X and S®". Let Y be
the circle S* where 0 # g € G acts as the mulitplication by —1. Then
any G invariant entire ratinal map f : X xY — $2" is G homotopically
trivially.

PROOF. Note that RP! is isomorphic to S'. In fact the isomorphism
is given as follows: Since

RP! = (g 1fa> |a€[0,1], 52 = a(1 — @)}
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define ¢ : RP! — S! by

d)((g s )):(1—20,25).

1l —a

The inverse map v : S'! — RP! is defined by

, 1/1~a b

Let p: S! — RP! be the entire rational map as in Lemma 2.1. Lemma
2.2 implies that for a given G invariant entire ratinal map f: X xY —
52" there exists an entire rational map ¢ : X x RP! — §?" such that
f = go(Id xp). Since RP! is isomorphic to §' we can apply Theorem
1.1 to show that ¢ is null homotopic. This null homotopy composed with
Id x p induces a null homotopy for f.

We now prove the general case of Theorem 1.2.

PROOF OF THEOREM 1.2. Let S be the unit circle S' C R* on which
0 # g € G acts as the antipodal map. For simplicity let m := 2n—k -1,
hence m is even. Consider the entire rational map ¢ : §7 x § — V

defined by

¢(I(]7--- ,rm,yo,yl) = (-I'()yo-,~-- ,:rn‘yn,yl)-

Then this map is a well defined G equivariant 1aap. We claim that
deg o = £2 # 0. It is easy to see that for almost all B € Y the inverse
image ¢~ '(B) consists of two points A and A'. Therefore deg ¢ is either
+2 or 0 depending on whether ¢ preserves (or reverses) the local orien-
tation at both A and A’ or not. Let t : S™ x § — S™ x § be the map
defined by

t(107 s 7mm~,y0~,y1) - (*'—.’I?(), s s Ty _yanl)-

Then ¢ ot = ¢, t(A) = A', and deg(t) = (—=1)™*? = 1 because m is
even. Therefore the local degree of ¢ at 4 and A’ are either both +1 or
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both —1. This shows that degd = £2 # 0. Let g - X x Y — 52" be a

given G invariant enitre rational map. Consider the composition
go(Idx¢):XxS’”xS—»XxY—-—»Sz".

By Lemma 2.3 this map is G-homotopically trivial. Now let 7 : ¥ —
Y/G = RP?"~* be the orbit map. Since the map g is G invariant there
exists a smooth map 7 : X x (Y/G) — 52" such that g = 7o (Id xn).
Then the degree of the composition (Id x7) o Id x¢ is 4. Indeed, we
consider the composition

pom: 8" xS =Y -Y/G.

For each point [B] € Y/G the inverse image 7~' [B]) consists of two
points B and —B. For almost all B € Y the inverse image ¢~ Y B)
consists of two points

Al - (‘TO"“ =$msyﬂayl)» AI] - (_xﬂv"- »“-Tm»“yo-,yl),

and ¢~!(—B) consists of two points

A, = (*TOa"' ,»’Um,—yo’—yﬂ, Alz = (—550,--- : ~Tm, Yo, "‘yl)-

Since the local degree of ¢ o m at these four points are equal, the degree
of ¢ o 7 is +4. This shows that the degree of the composition (Id x7) o
(Id x ) is £4. Since go(Id xn)o (Id x¢) = g o (Id x¢) is homotopically
trivial, we have 4 - degg = 0. Therefore degg = 0, which implies that §
is homotopically trivial. Thus ¢ is G homotopically trivial.

We now prove Theorem 1.3

PROOF OF THEOREM 1.3. This follows immediately from Theorem
1.2 and Lemma 2.2. Indeed, for any entire rational map g : X X
RP2"—k _, §2% the map f = go(Idxp): X xY — S isa G in-
variant entire rational map. Thus Theorem 1.2 gives null homotopy
fe: X xY — 8% 0<t <1 of f. By Lemma 2.2 there exists null
homotopy g¢ : X x RP?"~% — §27 of g.
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