• Title/Summary/Keyword: Z parameter

Search Result 311, Processing Time 0.03 seconds

Extraction of Extrinsic Circuit Parameters of HEMT by Minimizing Residual Errors (잔차 오차 최소에 의한 HEMT의 외인성 파라미터 추출)

  • Jeon, Man-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.8
    • /
    • pp.853-859
    • /
    • 2014
  • This study presents a technique for extracting all the extrinsic parameters of HEMTs by minimizing the residual errors between a pinch-off cold-FET's gate and drain pad de-embedded Z-parameters and its modeled Z-parameters calculated by the cold-FET's remaining parameters. The presented technique allows us to successfully extract the remaining extrinsic parameter values as well as the gate and drain pad capacitance value without the additional fabrications of the gate and drain dummy pad.

FEKETE-SZEGÖ PROBLEM FOR CERTAIN SUBCLASSES OF UNIVALENT FUNCTIONS

  • VASUDEVARAO, ALLU
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1937-1943
    • /
    • 2015
  • For $1{\leq}{\alpha}<2$, let $\mathcal{F}({\alpha})$ denote the class of locally univalent normalized analytic functions $f(z)=z+{\Sigma}_{n=2}^{\infty}{a_nz^n}$ in the unit disk ${\mathbb{D}}=\{z{\in}{\mathbb{C}}:{\left|z\right|}<1\}$ satisfying the condition $Re\(1+{\frac{zf^{{\prime}{\prime}}(z)}{f^{\prime}(z)}}\)>{\frac{{\alpha}}{2}}-1$. In the present paper, we shall obtain the sharp upper bound for Fekete-$Szeg{\ddot{o}}$ functional $|a_3-{\lambda}a_2^2|$ for the complex parameter ${\lambda}$.

Analysis Method of Signal Integrity for Mobile Display Circuit Modules (모바일 디스플레이 회로 모듈의 시그널 인티그리티 해석 기법)

  • Lee, Yong-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.64-69
    • /
    • 2009
  • This paper addresses the simulation methodology of signal integrity and power integrity for mobile display modules. The proposed technique can be applied to analyse a circuit module which consist of connector, FPCB and driver ICs. The recent demand of serial interconnection technology in the mobile display industry needs delicate impedance control of signal and power traces to prohibit system malfunctioning and to reduce electromagnetic field radiation. Based on the S-parameter and Z-parameter analysis, we analyse the correlation between frequency-domain and time-domain measurements. With multi-port macros, signal integrity can be included in power integrity analysis in time domain.

A Study on 3D Roughness Analysis of Rock Joints Based on Surface Angularity (표면평균기울기를 이용한 암석절리면의 3차원 거칠기 분석에 관한 연구)

  • Lee, Deok-Hwan;Lee, Seung-Joong;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.494-507
    • /
    • 2011
  • Rock joint surface roughness is one of the most important parameters in shear behavior analysis of rock joint surface. Until now, estimation of joint surface roughness has been conducted by various statistical methods with two-dimensional analysis. In this study, standard roughness profile suggested by Barton and Choubey (1977) was expanded into a 3D surface and its surface roughness was analyzed by surface angularity parameter. And the validity of quantification based on surface angularity was secured through comparison with $Z_2$ and Ai parameter. Also the surface angularity parameter was compared with shear strength by joint shear test using the replicated specimen.

Computation of Underwater Acoustic Field Using Acoustic Impedance as an Input Parameter for the Ocean Bottom (음향 임피던스를 해저면 입력인자로 이용하는 수중음장 계산)

  • Lee Seongwook;Oh Taekhwan;Na Jungyul;Lee Phil-Ho;Yoon Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • The Possibility of using acoustic impedance as an input Parameter for computation of underwater acoustic field in shallow waters was investigated. Analysis of the acoustic reflection from the ocean bottom with shear wave effect showed that acoustic impedances below the critical grazing angle have nearly angle-independent property and could be approximated with a single value of near-grazing impedance $Z_0$. Computations of the Propagation loss based on the concept of 'effective depth' indicate that near-grazing bottom acoustic impedances could be used as an input parameter for simulation of the acoustic fields in shallow waters.

Design and Sensitivity Analysis of Input Shaping Filter in the Z-domain (Z-영역에서 입력성형기의 설계와 민감도 해석)

  • Park, Un-Hwan;Lee, Jae-Won;Im, Byeong-Deok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1854-1862
    • /
    • 2000
  • Input shaping method is to convolute input shaper, which is sequence of impulses, with reference input command not to excite the natural frequency of system. To reduce residual vibration for the ch ange of frequency, the number of impulses should be increased. Until now, amplitudes and time interval of those has been searched from the derivative of residual vibration. However, if time interval of impulses is fixed as the half of vibration period of system, input shaper H(z) in z-domain becomes (I-pz-1)n/K in which increasing n is the mean that robustness for change of parameter is improved. Also, design of many types of input shapers in z-domain is very easy because sensitivity curve is displayed with $\mid$H(z)zn$\mid$$\times$100. In the z-domain, EI(Extra-Insensitive) input shaper could be designed without solving nonlinear simultaneous equations as design in continuous time domain. In addition to, the design possibility of input shaper for a damped system was shown.

Physiological Signal Analyses of Frictional Sound by Structural Parameters of Warp Knitted Fabrics

  • Cho Gilsoo;Kim Chunjeong;Cho Jayoung;Ha Jiyoung
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.89-94
    • /
    • 2005
  • The purpose of this study is to offer acoustical database of warp knitted fabrics by investigating frictional sound properties and physiological responses according to structural parameters such as construction, lap form, and direction of mutual guide bar movement. Fabric sounds of seven warp knitted fabrics are recorded, and Zwicker's psychoacoustic param­eters - loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z) - are calculated. Also, physiological responses evoked by frictional sounds of warp knitted fabrics are measured such as electroencephalogram (EEG), the ratio of high fre­quency to low frequency (HF/LF), respiration rate (RESP), skin conductance level (SCL), and photoplethysmograph (PPG). In case of constructions, frictional sound of sharkskin having higher loudness(Z) and fluctuation strength(Z) increases RESP. By lap form, open lap has louder and larger fluctuating sound than closed lap, but there aren't significant difference of physi­ological responses between open lap and closed lap. In direction of mutual guide bar movement, parallel direction evokes bigger changes of beta wave than counter direction because of its loud, rough, and fluctuating sound. Fluctuation strength(Z) and roughness(Z) are defined as important factors for predicting physiological responses in construction and mutual guide bar movement, respectively.

HALO SPIN PARAMETER IN COSMOLOGICAL SIMULATIONS

  • Ahn, Jieun;Kim, Juhan;Shin, Jihye;Kim, Sungsoo S.;Choi, Yun-Young
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.2
    • /
    • pp.77-86
    • /
    • 2014
  • Using a cosmological ${\Lambda}CDM$ simulation, we analyze the differences between the widely-used spin parameters suggested by Peebles and Bullock. The dimensionless spin parameter ${\lambda}$ proposed by Peebles is theoretically well-justified but includes an annoying term, the potential energy, which cannot be directly obtained from observations and is computationally expensive to calculate in numerical simulations. The Bullock's spin parameter ${\lambda}^{\prime}$ avoids this problem assuming the isothermal density profile of a virialized halo in the Newtonian potential model. However, we find that there exists a substantial discrepancy between ${\lambda}$ and ${\lambda}^{\prime}$ depending on the adopted potential model (Newtonian or Plummer) to calculate the halo total energy and that their redshift evolutions differ to each other significantly. Therefore, we introduce a new spin parameter, ${\lambda}^{\prime\prime}$, which is simply designed to roughly recover the value of ${\lambda}$ but to use the same halo quantities as used in ${\lambda}^{\prime}$. If the Plummer potential is adopted, the ${\lambda}^{\prime\prime}$ is related to the Bullock's definition as ${\lambda}^{\prime\prime}=0.80{\times}(1+z)^{-1/12}{\lambda}^{\prime}$. Hence, the new spin parameter ${\lambda}^{\prime\prime}$ distribution becomes consistent with a log-normal distribution frequently seen for the ${\lambda}^{\prime}$ while its mean value is much closer to that of ${\lambda}$. On the other hand, in case of the Newtonian potential model, we obtain the relation of ${\lambda}^{\prime\prime}=(1+z)^{-1/8}{\lambda}^{\prime}$; there is no significant difference at z = 0 as found by others but ${\lambda}^{\prime}$ becomes more overestimated than ${\lambda}$ or ${\lambda}^{\prime\prime}$ at higher redshifts. We also investigate the dependence of halo spin parameters on halo mass and redshift. We clearly show that although the ${\lambda}^{\prime}$ for small-mass halos with $M_h$ < $2{\times}10^{12}M_{\odot}$ seems redshift independent after z = 1, all the spin parameters explored, on the whole, show a stronger correlation with the increasing halo mass at higher redshifts.

The Effects of Temperature and Strain Rate on Flow Stress and Strain of AA5083 Alloy during High Temperature Deformation (AA5083 합금의 고온 변형시 유동응력 및 연신율에 미치는 온도와 변형 속도의 영향)

  • Ko, Byung-Chul;Kim, Jong-Heon;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.2
    • /
    • pp.168-176
    • /
    • 1998
  • Hot workability of the AA5083 alloy ws investigated by torsion test at temperature ranges of $350{\sim}520^{\circ}C$ and strain rates of 0.5, 1.0, and 3.0/sec. The flow stress and hot ductility of the AA5083 alloy as a function of deformation variables such as temperature and train rate were studied. The microstructural evolution of the AA5083 alloy was studied in relation to Zener-Hollomon parameter (Z=exp( /RT) Also the hot restoration mechanism of the AA5083 alloy was small when Z val-ues were higher than $1.73{\times}1016/sec(370^{\circ}C,\;0.5/sec)$ In addition the difference microstructures during hot deformation. It was found that the increase of flow curves and deformed microstructures during hot deformation. It was found that the increase of flow stress of the AA5083 alloy was small when Z val-ues were higher than $1.73{\times}1016/sec(370^{\circ}C.\;0.5/sec)$. However under the low Z values less than $1.73{\times}1016/sec(370^{\circ}C,\;0.5/sec)$ the flow stress increase with increasing the Z values. The large dispersoid particles in the matrix grain decreased the flow strain of the AA5083 alloy because it caused the stress concentration during hot deformation.

  • PDF