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FEKETE-SZEGO PROBLEM FOR CERTAIN SUBCLASSES OF
UNIVALENT FUNCTIONS

ALLU VASUDEVARAO

ABSTRACT. For 1 < a < 2, let F(a) denote the class of locally univalent

normalized analytic functions f(z) = z 4+ > 77 5 anz™ in the unit disk
D = {z € C: |z| < 1} satisfying the condition
"
Re(l-i—zf (z)) >2_
f'(2) 2

In the present paper, we shall obtain the sharp upper bound for Fekete-
Szegd functional |a3 — Aa3| for the complex parameter A.

1. Introduction

Let D = {z € C: |z| < 1} be the unit disk in the complex plane C. Let H
denote the class of analytic functions in ID. Here we think of H as a topological
vector space endowed with the topology of uniform convergence over compact
subsets of D. Let B denote the class of analytic functions w : D — D of the
form

(1.1) w(z) = chzk.

k=0
Then in view of Schwarz-Pick lemma, it is well-known that

(1.2) lco] <1 and |ei| <1 — |eol?.

Let A denote the family of functions f in H normalized by f(0) = 0 and
f'(0) = 1. A function f is said to be univalent in D if it is one-to-one in D.
Let S denote the class of univalent functions in A. A domain 0 € Q C C is
said to be starlike domain if the line segment joining 0 to any point in 2 must
lie in . A function f € A is said to be starlike function if f maps D onto a
domain f (D) which is starlike with respect to the origin. We denote the class
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of univalent starlike functions in A by &*. It is well-known that a function
f € Aisin S8* if and only if

Re <ZJ{(/$)> >0, zeD.

A domain Q C C is said to be convex if it is starlike with respect to every point

in Q. A function f € A is said to be convex if f(D) is a convex domain. We
denote the class of convex univalent functions in D by C. A function f € A is

in C if and only if
Zf”(Z))
Re [ 1+ >0, ze€D.
(1575
It is well-known that f € C if and only if zf/ € S*. A function f € A is said to
be close-to-convex if there exists a convex univalent function g and a number

¢ € R such that
!
Re (eid’M) >0 for z € D.
9'(2)
Let K denote the class of close-to-convex functions f in A. It is well-known
that every close-to-convex function is univalent in . For the basic properties
of functions in these subclasses, we refer to [4].

2. Preliminaries

For 1 < a < 2, let F(«) denote the class of locally univalent functions f in
the class A satisfying the condition

Re (Pf(2)) > % 1 forzeD,
where
zf"(z)
fr(z)

In particular by taking oo = 1, the class F(«) reduces to the following class

Pf(z) =1+

f:f(l){fEA: RePf(z)>f% forzG]D)}.

It is known that F C K (see [20, 21]). In [22], the region of variability for
functions in the class F has been studied. The sharp arclength for functions
in F(«) has been investigated in [23]. For the recent investigation about the
class F we refer to [16]. For a detailed discussion about these classes we refer
to [20, 21].

For a locally univalent function f(z) = z+ Y .-, a,z" in the unit disk D,
the quantities

=i i si= (5) -3 (715)

represent the pre-Schwarzian and Schwarzian derivative respectively (see [9,
17]). The quantity as — a3 represents $Sf(0). For a real (or more generally, a
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complex) number )\, the coefficient functional ¢ (f) = az — Aa3 for functions f
in the class A plays vital role in the theory of univalent functions. For instance,
maximizing |¢x(f)| over the class S or on its subclasses is called the Fekete-
Szegd problem. By means of Loewner’s method, M. Fekete and G. Szego [5]
obtained the following estimate

(2.1) las — Aa3| < 1+ 2exp (—2):\>

for f € S in the case that A is a real parameter, 0 < A < 1. Although
Koebe function z/(1 — z)? is an extremal for many problems in the class S and
various subclasses of S, it is interesting to see that Koebe function fails to be
an extremal for Fekete-Szegé problem for 0 < A < 1. The inequality (2.1) is
sharp in the following sense that for each A in [0, 1), there exists a function
f € S for which equality holds.

In 1987, W. Koepf [10] solved Fekete-Szegd problem for functions that are
close-to-convex. In the same year, Koepf [11] generalized Fekete-Szegd prob-
lem for functions that are close-to-convex of order §. In 1985, Pfluger [18]
employed the variational method to give yet another treatment of the Fekete-
Szego inequality, including a description of the image domains under extremal
functions. In 1986, Jenkins [7] obtained Fekete-Szegd inequality (2.1) by means
of his general coefficient theorem [6]. Using Jenkins’ method, Pfluger [19] has

shown that
-2\
exp T

holds for complex A in the unit disk D with Re (ﬁ) > 1. The interesting
fact is that the inequality (2.2) is sharp if and only if X is in a certain

shaped subdomain of the disk given by
(u + i6v)
(2 +02)

(2.2) las — Xa3| <142

“pear”

A=1-— —-1<6<1
where
u=1-—log(cost) and v=tant—7, 0<7<m/2.

Ma and Minda [13, 14, 15] gave a complete answer to the Fekete-Szego prob-
lem for the classes of strongly close-to-convex functions and strongly starlike
functions. Motivated by the work of Ma and Minda (see [14]), a new method
for solving the Fekete-Szegd problem for classes of close-to-convex functions
defined in terms of subordination has been investigated by Choi, Kim and Sug-
awa [3]. Fekete-Szego problem has long and rich history in the literature (see
for instance, [1, 2, 8, 12]).

In the present paper, we shall solve the Fekete-Szeg6 problem for functions
in the class F(a) with complex parameter A. In particular (by taking o = 1)
we shall obtain the sharp bound for the Fekete-Szegé functional for functions
in the class F.
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3. Main results
Theorem 3.1. Let f(z) =2+, ,a,2" € F(a) and X\ € C. Then we have
(32) |a3 - )\(122|

A=) |1+ 3(4-a)2-3N) for A -2 2 5ty
<
%(47 a) for | A — g}(()4:20?3 < ﬁ-

The inequality (3.2) is sharp.

Proof. Let f € F(a) be given by

(3.3) fz)=z+ Z apz".
k=2

Then Re (1 +zf"(2)/f'(2)) > § — 1 for z € D, which is equivalent to

o ')
Re <25+Zf’(z) >0 for zeD.
Let
(3.4) Pi(z) = — for z € D.
2-3)
Then clearly ISf(O) = 1 and Re ]Sf(z) > 0 in D. Therefore there exists an

analytic function w € B of the form (1.1) such that

1+ 2w(2)

(3.5) Pp(z) = et

From (3.4) and (3.5) we see that

( ; fﬁ(z)) (1~ 2(2) = (1 + 20(2)) (2~ a/2),

SRR

which is equivalent to

(3.6) 2f"(2)(1 = 2w(2)) = (4 — a)zw(2) f'(2).

By simplifying (3.6) using the series representations in (1.1) and (3.3) we obtain
2f"(2)(1 — 2w(z)) = 2a2z + (6as — 2azcp)2* + - -+ and

3.7 { (4 —a)z2w(2)f'(z) = (4 — a)coz + (4 — a)(2azco + c1)2% + -+ - .

On comparing the coefficients of z and z? using (3.6) and (3.7), we obtain

az = 1(4—a)cy and

(3.8) 6as = 2asco + (4 — a)(2az2¢0 + ¢1).
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Using the representation of az = 1(4 — a)co in (3.8), we obtain

as = é(él—a) (56— a)cg+cr).

Thus we consider

39  az—ra2=Ud = D (65— )2 +er) - 24— a)2e2
- @ <c1 + <(5 —a) - SA - a)) cg>
_“ - @) <c1 + <1 n %(4 —a)2 - 3)\)) co)
(1-a) 2

where y(a) = 1+ £(4 — a)(2 — 3)). By applying the inequalities (1.2) in (3.9),
we see that

14—«
jas — 23] < U2 s+ pa)lieol?)
14—«
< (1 + 0ol
14—«
< 2 1 (@] - Dieol?).
Hence we obtain
La—a)y(@)]  for y(a) > 1
(3.10) laz — Aa3| < { Els
54 —a) for |y(a)] < 1.
We note that |y(«)| < 1 if and only if |\ — :31(()4120?‘) < 3(427a)' Finally, (3.10)
reduces to
tA-a) |1+ 34— a)2-3))| for [A— 3}(04120‘3‘) > ﬁ
az — )\ag‘ <
14— a) for [A— 48=20] < ot

To show the first inequality in (3.2) is sharp, we consider

(3.11) folz) = 5 i a ((1 — zl)<3*a> - 1)

1 1
:z+§(4foz)22+6(20—9a+0¢2)z3+~'.

From (3.11), it is easy to see that

gy S0 a2
Pr() =12y =1+ (- a)—.
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Therefore, Re Py,(z2) > § — 1 for z € D. This shows that fy € F(a). From
(3.11), we have az = a2(fo) = (4 — ) and a3 := a3(fo) = (4 — )5 — a).
A simple computation shows that

o _ 1 A 2
as — \az = 6(4—04)(5—a)—z(4—a)
(1-a)
=% (504—/\(404))
(4-a) 1

= <1+§(4a)(23/\)).

This shows that the first inequality in (3.2) is sharp. To show the second
inequality in (3.2) is sharp, we consider the function f;(z) defined by

, 1
fi(z) = 1= 2)eam

1 1
:1+5(4—04)22+5(24—10a+o¢2)z4+---.

It is easy to see that fi(z) = z+ $(4 — a)z® + 15(24 — 100 + a?)2% + -+ A
simple computation shows that

" 2

1(2) <

1+ (d—a)—.

R TS
Therefore f1 € F(a) because Re Py, (z) > § — 1 for z € D. From the series
representation of f1(z), we have az := az(f1) = 0 and az := as(f1) = §(4 — ).
This shows that the second inequality in (3.2) is sharp.

Pfl(z):]‘+

In particular by letting @ = 1 in Theorem 3.1 we obtain the Fekete-Szego
inequality for functions in the class F.

Corollary 3.12. Let f(z) =z+ Y .- yanz" € F and A € C. Then we have

2=3A for A=5[=3
(3.13) laz — Aaz?| <
for ‘)\—g| <

NelIN)

1
2
The inequality (3.13) is sharp.
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