FEKETE-SZEGÖ PROBLEM FOR CERTAIN SUBCLASSES OF UNIVALENT FUNCTIONS

Allu Vasudevarao

Abstract

For $1 \leq \alpha<2$, let $\mathcal{F}(\alpha)$ denote the class of locally univalent normalized analytic functions $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ in the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ satisfying the condition $$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\frac{\alpha}{2}-1
$$

In the present paper, we shall obtain the sharp upper bound for FeketeSzegö functional $\left|a_{3}-\lambda a_{2}^{2}\right|$ for the complex parameter λ.

1. Introduction

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the unit disk in the complex plane \mathbb{C}. Let \mathcal{H} denote the class of analytic functions in \mathbb{D}. Here we think of \mathcal{H} as a topological vector space endowed with the topology of uniform convergence over compact subsets of \mathbb{D}. Let \mathcal{B} denote the class of analytic functions $\omega: \mathbb{D} \rightarrow \mathbb{D}$ of the form

$$
\begin{equation*}
\omega(z)=\sum_{k=0}^{\infty} c_{k} z^{k} . \tag{1.1}
\end{equation*}
$$

Then in view of Schwarz-Pick lemma, it is well-known that

$$
\begin{equation*}
\left|c_{0}\right| \leq 1 \quad \text { and } \quad\left|c_{1}\right| \leq 1-\left|c_{0}\right|^{2} \tag{1.2}
\end{equation*}
$$

Let \mathcal{A} denote the family of functions f in \mathcal{H} normalized by $f(0)=0$ and $f^{\prime}(0)=1$. A function f is said to be univalent in \mathbb{D} if it is one-to-one in \mathbb{D}. Let \mathcal{S} denote the class of univalent functions in \mathcal{A}. A domain $0 \in \Omega \subseteq \mathbb{C}$ is said to be starlike domain if the line segment joining 0 to any point in Ω must lie in Ω. A function $f \in \mathcal{A}$ is said to be starlike function if f maps \mathbb{D} onto a domain $f(\mathbb{D})$ which is starlike with respect to the origin. We denote the class

[^0]of univalent starlike functions in \mathcal{A} by \mathcal{S}^{*}. It is well-known that a function $f \in \mathcal{A}$ is in \mathcal{S}^{*} if and only if
$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0, \quad z \in \mathbb{D}
$$

A domain $\Omega \subseteq \mathbb{C}$ is said to be convex if it is starlike with respect to every point in Ω. A function $f \in \mathcal{A}$ is said to be convex if $f(\mathbb{D})$ is a convex domain. We denote the class of convex univalent functions in \mathbb{D} by \mathcal{C}. A function $f \in \mathcal{A}$ is in \mathcal{C} if and only if

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0, \quad z \in \mathbb{D}
$$

It is well-known that $f \in \mathcal{C}$ if and only if $z f^{\prime} \in \mathcal{S}^{*}$. A function $f \in \mathcal{A}$ is said to be close-to-convex if there exists a convex univalent function g and a number $\phi \in \mathbb{R}$ such that

$$
\operatorname{Re}\left(e^{i \phi} \frac{f^{\prime}(z)}{g^{\prime}(z)}\right)>0 \quad \text { for } z \in \mathbb{D}
$$

Let \mathcal{K} denote the class of close-to-convex functions f in \mathcal{A}. It is well-known that every close-to-convex function is univalent in \mathbb{D}. For the basic properties of functions in these subclasses, we refer to [4].

2. Preliminaries

For $1 \leq \alpha<2$, let $\mathcal{F}(\alpha)$ denote the class of locally univalent functions f in the class \mathcal{A} satisfying the condition

$$
\operatorname{Re}\left(P_{f}(z)\right)>\frac{\alpha}{2}-1 \quad \text { for } z \in \mathbb{D}
$$

where

$$
P_{f}(z)=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}
$$

In particular by taking $\alpha=1$, the class $\mathcal{F}(\alpha)$ reduces to the following class

$$
\mathcal{F}:=\mathcal{F}(1)=\left\{f \in \mathcal{A}: \operatorname{Re} P_{f}(z)>-\frac{1}{2} \quad \text { for } z \in \mathbb{D}\right\} .
$$

It is known that $\mathcal{F} \subseteq \mathcal{K}$ (see [20, 21]). In [22], the region of variability for functions in the class \mathcal{F} has been studied. The sharp arclength for functions in $\mathcal{F}(\alpha)$ has been investigated in [23]. For the recent investigation about the class \mathcal{F} we refer to [16]. For a detailed discussion about these classes we refer to [20, 21].

For a locally univalent function $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ in the unit disk \mathbb{D}, the quantities

$$
T_{f}(z):=\frac{f^{\prime \prime}(z)}{f^{\prime}(z)} \quad \text { and } \quad S_{f}(z):=\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}
$$

represent the pre-Schwarzian and Schwarzian derivative respectively (see [9, 17]). The quantity $a_{3}-a_{2}^{2}$ represents $\frac{1}{6} S_{f}(0)$. For a real (or more generally, a
complex) number λ, the coefficient functional $\phi_{\lambda}(f)=a_{3}-\lambda a_{2}^{2}$ for functions f in the class \mathcal{A} plays vital role in the theory of univalent functions. For instance, maximizing $\left|\phi_{\lambda}(f)\right|$ over the class \mathcal{S} or on its subclasses is called the FeketeSzegö problem. By means of Loewner's method, M. Fekete and G. Szegö [5] obtained the following estimate

$$
\begin{equation*}
\left|a_{3}-\lambda a_{2}^{2}\right| \leq 1+2 \exp \left(\frac{-2 \lambda}{1-\lambda}\right) \tag{2.1}
\end{equation*}
$$

for $f \in \mathcal{S}$ in the case that λ is a real parameter, $0 \leq \lambda<1$. Although Koebe function $z /(1-z)^{2}$ is an extremal for many problems in the class \mathcal{S} and various subclasses of \mathcal{S}, it is interesting to see that Koebe function fails to be an extremal for Fekete-Szegö problem for $0<\lambda<1$. The inequality (2.1) is sharp in the following sense that for each λ in $[0,1)$, there exists a function $f \in \mathcal{S}$ for which equality holds.

In 1987, W. Koepf [10] solved Fekete-Szegö problem for functions that are close-to-convex. In the same year, Koepf [11] generalized Fekete-Szegö problem for functions that are close-to-convex of order β. In 1985, Pfluger [18] employed the variational method to give yet another treatment of the FeketeSzegö inequality, including a description of the image domains under extremal functions. In 1986, Jenkins [7] obtained Fekete-Szegö inequality (2.1) by means of his general coefficient theorem [6]. Using Jenkins' method, Pfluger [19] has shown that

$$
\begin{equation*}
\left|a_{3}-\lambda a_{2}^{2}\right| \leq 1+2\left|\exp \left(\frac{-2 \lambda}{1-\lambda}\right)\right| \tag{2.2}
\end{equation*}
$$

holds for complex λ in the unit disk \mathbb{D} with $\operatorname{Re}\left(\frac{1}{1-\lambda}\right) \geq 1$. The interesting fact is that the inequality (2.2) is sharp if and only if λ is in a certain "pear" shaped subdomain of the disk given by

$$
\lambda=1-\frac{(u+i \theta v)}{\left(u^{2}+v^{2}\right)}, \quad-1 \leq \theta \leq 1
$$

where

$$
u=1-\log (\cos \tau) \quad \text { and } \quad v=\tan \tau-\tau, \quad 0<\tau<\pi / 2
$$

Ma and Minda $[13,14,15]$ gave a complete answer to the Fekete-Szegö problem for the classes of strongly close-to-convex functions and strongly starlike functions. Motivated by the work of Ma and Minda (see [14]), a new method for solving the Fekete-Szegö problem for classes of close-to-convex functions defined in terms of subordination has been investigated by Choi, Kim and Sugawa [3]. Fekete-Szegö problem has long and rich history in the literature (see for instance, $[1,2,8,12]$).

In the present paper, we shall solve the Fekete-Szegö problem for functions in the class $\mathcal{F}(\alpha)$ with complex parameter λ. In particular (by taking $\alpha=1$) we shall obtain the sharp bound for the Fekete-Szegö functional for functions in the class \mathcal{F}.

3. Main results

Theorem 3.1. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in \mathcal{F}(\alpha)$ and $\lambda \in \mathbb{C}$. Then we have

$$
\begin{align*}
& \left|a_{3}-\lambda a_{2}{ }^{2}\right| \tag{3.2}\\
\leq & \begin{cases}\frac{1}{6}(4-\alpha)\left|1+\frac{1}{2}(4-\alpha)(2-3 \lambda)\right| & \text { for }\left|\lambda-\frac{10-2 \alpha}{3(4-\alpha)}\right| \geq \frac{2}{3(4-\alpha)} \\
\frac{1}{6}(4-\alpha) & \text { for }\left|\lambda-\frac{10-2 \alpha}{3(4-\alpha)}\right|<\frac{2}{3(4-\alpha)}\end{cases}
\end{align*}
$$

The inequality (3.2) is sharp.
Proof. Let $f \in \mathcal{F}(\alpha)$ be given by

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{3.3}
\end{equation*}
$$

Then $\operatorname{Re}\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right)>\frac{\alpha}{2}-1$ for $z \in \mathbb{D}$, which is equivalent to

$$
\operatorname{Re}\left(2-\frac{\alpha}{2}+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0 \quad \text { for } z \in \mathbb{D}
$$

Let

$$
\begin{equation*}
\widetilde{P}_{f}(z)=\frac{\left(2-\frac{\alpha}{2}+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)}{\left(2-\frac{\alpha}{2}\right)} \quad \text { for } z \in \mathbb{D} \tag{3.4}
\end{equation*}
$$

Then clearly $\widetilde{P}_{f}(0)=1$ and $\operatorname{Re} \widetilde{P}_{f}(z)>0$ in \mathbb{D}. Therefore there exists an analytic function $\omega \in \mathcal{B}$ of the form (1.1) such that

$$
\begin{equation*}
\widetilde{P}_{f}(z)=\frac{1+z \omega(z)}{1-z \omega(z)} \tag{3.5}
\end{equation*}
$$

From (3.4) and (3.5) we see that

$$
\left(2-\frac{\alpha}{2}+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)(1-z \omega(z))=(1+z \omega(z))(2-\alpha / 2)
$$

which is equivalent to

$$
\begin{equation*}
z f^{\prime \prime}(z)(1-z \omega(z))=(4-\alpha) z \omega(z) f^{\prime}(z) \tag{3.6}
\end{equation*}
$$

By simplifying (3.6) using the series representations in (1.1) and (3.3) we obtain

$$
\left\{\begin{align*}
z f^{\prime \prime}(z)(1-z \omega(z)) & =2 a_{2} z+\left(6 a_{3}-2 a_{2} c_{0}\right) z^{2}+\cdots \text { and } \tag{3.7}\\
(4-\alpha) z \omega(z) f^{\prime}(z) & =(4-\alpha) c_{0} z+(4-\alpha)\left(2 a_{2} c_{0}+c_{1}\right) z^{2}+\cdots
\end{align*}\right.
$$

On comparing the coefficients of z and z^{2} using (3.6) and (3.7), we obtain $a_{2}=\frac{1}{2}(4-\alpha) c_{0}$ and

$$
\begin{equation*}
6 a_{3}=2 a_{2} c_{0}+(4-\alpha)\left(2 a_{2} c_{0}+c_{1}\right) \tag{3.8}
\end{equation*}
$$

Using the representation of $a_{2}=\frac{1}{2}(4-\alpha) c_{0}$ in (3.8), we obtain

$$
a_{3}=\frac{1}{6}(4-\alpha)\left((5-\alpha) c_{0}^{2}+c_{1}\right) .
$$

Thus we consider

$$
\begin{align*}
a_{3}-\lambda a_{2}^{2} & =\frac{(4-\alpha)}{6}\left((5-\alpha) c_{0}^{2}+c_{1}\right)-\frac{\lambda}{4}(4-\alpha)^{2} c_{0}^{2} \tag{3.9}\\
& =\frac{(4-\alpha)}{6}\left(c_{1}+\left((5-\alpha)-\frac{3}{2} \lambda(4-\alpha)\right) c_{0}^{2}\right) \\
& =\frac{(4-\alpha)}{6}\left(c_{1}+\left(1+\frac{1}{2}(4-\alpha)(2-3 \lambda)\right) c_{0}^{2}\right) \\
& =\frac{(4-\alpha)}{6}\left(c_{1}+\gamma(\alpha) c_{0}^{2}\right),
\end{align*}
$$

where $\gamma(\alpha)=1+\frac{1}{2}(4-\alpha)(2-3 \lambda)$. By applying the inequalities (1.2) in (3.9), we see that

$$
\begin{aligned}
\left|a_{3}-\lambda a_{2}^{2}\right| & \leq \frac{(4-\alpha)}{6}\left(\left|c_{1}\right|+|\gamma(\alpha)|\left|c_{0}\right|^{2}\right) \\
& \leq \frac{(4-\alpha)}{6}\left(1-\left|c_{0}\right|^{2}+|\gamma(\alpha)|\left|c_{0}\right|^{2}\right) \\
& \leq \frac{(4-\alpha)}{6}\left(1+(|\gamma(\alpha)|-1)\left|c_{0}\right|^{2}\right)
\end{aligned}
$$

Hence we obtain

$$
\left|a_{3}-\lambda a_{2}^{2}\right| \leq \begin{cases}\frac{1}{6}(4-\alpha)|\gamma(\alpha)| & \text { for }|\gamma(\alpha)| \geq 1 \tag{3.10}\\ \frac{1}{6}(4-\alpha) & \text { for }|\gamma(\alpha)|<1\end{cases}
$$

We note that $|\gamma(\alpha)|<1$ if and only if $\left|\lambda-\frac{10-2 \alpha}{3(4-\alpha)}\right|<\frac{2}{3(4-\alpha)}$. Finally, (3.10) reduces to
$\left|a_{3}-\lambda a_{2}^{2}\right| \leq \begin{cases}\frac{1}{6}(4-\alpha)\left|1+\frac{1}{2}(4-\alpha)(2-3 \lambda)\right| & \text { for }\left|\lambda-\frac{10-2 \alpha}{3(4-\alpha)}\right| \geq \frac{2}{3(4-\alpha)} \\ \frac{1}{6}(4-\alpha) & \text { for }\left|\lambda-\frac{10-2 \alpha}{3(4-\alpha)}\right|<\frac{2}{3(4-\alpha)} .\end{cases}$
To show the first inequality in (3.2) is sharp, we consider

$$
\begin{align*}
f_{0}(z) & =\frac{1}{3-\alpha}\left(\frac{1}{(1-z)^{(3-\alpha)}}-1\right) \tag{3.11}\\
& =z+\frac{1}{2}(4-\alpha) z^{2}+\frac{1}{6}\left(20-9 \alpha+\alpha^{2}\right) z^{3}+\cdots .
\end{align*}
$$

From (3.11), it is easy to see that

$$
P_{f_{0}}(z)=1+z \frac{f_{0}^{\prime \prime}(z)}{f_{0}^{\prime}(z)}=1+(4-\alpha) \frac{z}{1-z}
$$

Therefore, $\operatorname{Re} P_{f_{0}}(z)>\frac{\alpha}{2}-1$ for $z \in \mathbb{D}$. This shows that $f_{0} \in \mathcal{F}(\alpha)$. From (3.11), we have $a_{2}:=a_{2}\left(f_{0}\right)=\frac{1}{2}(4-\alpha)$ and $a_{3}:=a_{3}\left(f_{0}\right)=\frac{1}{6}(4-\alpha)(5-\alpha)$. A simple computation shows that

$$
\begin{aligned}
a_{3}-\lambda a_{2}^{2} & =\frac{1}{6}(4-\alpha)(5-\alpha)-\frac{\lambda}{4}(4-\alpha)^{2} \\
& =\frac{(4-\alpha)}{6}\left(5-\alpha-\frac{3}{2} \lambda(4-\alpha)\right) \\
& =\frac{(4-\alpha)}{6}\left(1+\frac{1}{2}(4-\alpha)(2-3 \lambda)\right) .
\end{aligned}
$$

This shows that the first inequality in (3.2) is sharp. To show the second inequality in (3.2) is sharp, we consider the function $f_{1}(z)$ defined by

$$
\begin{aligned}
f_{1}^{\prime}(z) & =\frac{1}{\left(1-z^{2}\right)^{(2-\alpha / 2)}} \\
& =1+\frac{1}{2}(4-\alpha) z^{2}+\frac{1}{8}\left(24-10 \alpha+\alpha^{2}\right) z^{4}+\cdots
\end{aligned}
$$

It is easy to see that $f_{1}(z)=z+\frac{1}{6}(4-\alpha) z^{3}+\frac{1}{40}\left(24-10 \alpha+\alpha^{2}\right) z^{5}+\cdots$. A simple computation shows that

$$
P_{f_{1}}(z)=1+z \frac{f_{1}^{\prime \prime}(z)}{f_{1}^{\prime}(z)}=1+(4-\alpha) \frac{z^{2}}{1-z^{2}}
$$

Therefore $f_{1} \in \mathcal{F}(\alpha)$ because $\operatorname{Re} P_{f_{1}}(z)>\frac{\alpha}{2}-1$ for $z \in \mathbb{D}$. From the series representation of $f_{1}(z)$, we have $a_{2}:=a_{2}\left(f_{1}\right)=0$ and $a_{3}:=a_{3}\left(f_{1}\right)=\frac{1}{6}(4-\alpha)$. This shows that the second inequality in (3.2) is sharp.

In particular by letting $\alpha=1$ in Theorem 3.1 we obtain the Fekete-Szegö inequality for functions in the class \mathcal{F}.
Corollary 3.12. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in \mathcal{F}$ and $\lambda \in \mathbb{C}$. Then we have

$$
\left|a_{3}-\lambda a_{2}^{2}\right| \leq \begin{cases}\left|2-\frac{9}{4} \lambda\right| & \text { for }\left|\lambda-\frac{8}{9}\right| \geq \frac{2}{9} \tag{3.13}\\ \frac{1}{2} & \text { for }\left|\lambda-\frac{8}{9}\right|<\frac{2}{9}\end{cases}
$$

The inequality (3.13) is sharp.
Acknowledgement. The author thank Prof. S. Ponnusamy for useful discussion. The author thank the referee of this paper for careful reading and many helpful comments.

References

[1] H. R. Abdel-Gawad and D. K. Thomas, The Fekete-Szegö problem for strongly close-to-convex functions, Proc. Amer. Math. Soc. 114 (1992), no. 2, 345-349.
[2] B. Bhowmik, S. Ponnusamy, and K.-J Wirths, On the Fekete-Szegö problem for concave univalent functions, J. Math. Anal. Appl. 373 (2011), no. 2, 432-438.
[3] J. H. Choi, Y. C. Kim, and T. Sugawa, A general approach to the Fekete-Szegö problem, J. Math. Soc. Japan. 59 (2007), no. 3, 707-727.
[4] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo, Springer-Verlag, 1983.
[5] M. Fekete and G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. London Math. Soc. 8 (1933), 85-89.
[6] J. A. Jenkins, A general coefficient theorem, Trans. Amer. Math. Soc. 77 (1954), 262280.
[7] , On Certain Coefficients of Univalent Funcions, Analytic Functions, Princeton University press, Princeton, N.J., 1960.
[8] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), no. 1, 8-12.
[9] Y. C. Kim and T. Sugawa, Norm estimates of the pre-Schwarzian derivatives for certain classes of univalent functions, Proc. Edinb. Math. Soc. 49 (2006), no. 1, 131-143.
[10] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc. 101 (1987), no. 1, 89-95.
[11] _, On the Fekete-Szegö problem for close-to-convex functions II, Arch. Math. (Basel) 49 (1987), no. 5, 420-433.
[12] R. R. London, Fekete-Szegö inequalities for close-to-convex functions, Proc. Amer. Math. Soc. 117 (1993), no. 4, 947-950.
[13] W. Ma and D. Minda, An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 45 (1991), 89-97.
[14] \qquad , A unified treatment of some special classes of univalent functions, In: Proceedings of the Conference on Complex Analysis, pp. 157-169, (eds. Z. Li, F. Ren, L. Yang and S. Zhang), International Press Inc., 1992.
[15] , Coefficient inequalities for strongly close-to-convex functions, J. Math. Anal. Appl. 205 (1997), no. 2, 537-553.
[16] Y. A. Muhanna, L. Li, and S. Ponnusamy, Extremal problems on the class of convex functions of order $-\frac{1}{2}$, Arch. Math. (Basel) 103 (2014), no. 6, 461-471.
[17] Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551.
[18] A. Pfluger, The Fekete-Szegö inequality by a variational method, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 447-454.
[19] , The Fekete-Szegö inequality for complex parameters, Complex Variables Theory Appl. 7 (1986), no. 1-3, 149-160.
[20] S. Ponnusamy and S. Rajasekaran, New sufficient conditions for starlike and univalent functions, Soochow J. Math. 21 (1995), no. 2, 193-201.
[21] S. Ponnusamy and V. Singh, Univalence of certain integral transforms, Glas. Mat. Ser. III (51) 31 (1996), no. 2, 253-261.
[22] S. Ponnusamy and A. Vasudevarao, Region of variability of two subclasses of univalent functions, J. Math. Anal. Appl. 332 (2007), no. 2, 1323-1334.
[23] A. Vasudevarao, An arclength problem for some subclasses of univalent functions, J. Analysis (2014) to appear.

Department of Mathematics
Indian Institute of Technology Khargpur
Kharagpur-721 302, West Bengal, India
E-mail address: alluvasu@maths.iitkgp.ernet.in

[^0]: Received August 23, 2014; Revised May 12, 2015.
 2010 Mathematics Subject Classification. Primary 30C45.
 Key words and phrases. univalent functions, starlike, convex, close-to-convex and FeketeSzegö problem.

 The author thanks SRIC, IIT Kharagpur for the financial support (Grant No.IIT/ SRIC/ISIRD/2012-2013).

