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FEKETE-SZEGÖ PROBLEM FOR CERTAIN SUBCLASSES OF

UNIVALENT FUNCTIONS

Allu Vasudevarao

Abstract. For 1 ≤ α < 2, let F(α) denote the class of locally univalent
normalized analytic functions f(z) = z +

∑∞
n=2 anz

n in the unit disk
D = {z ∈ C : |z| < 1} satisfying the condition

Re

(

1 +
zf ′′(z)

f ′(z)

)

>
α

2
− 1.

In the present paper, we shall obtain the sharp upper bound for Fekete-
Szegö functional |a3 − λa22| for the complex parameter λ.

1. Introduction

Let D = {z ∈ C : |z| < 1} be the unit disk in the complex plane C. Let H
denote the class of analytic functions in D. Here we think of H as a topological
vector space endowed with the topology of uniform convergence over compact
subsets of D. Let B denote the class of analytic functions ω : D → D of the
form

(1.1) ω(z) =

∞
∑

k=0

ckz
k.

Then in view of Schwarz-Pick lemma, it is well-known that

(1.2) |c0| ≤ 1 and |c1| ≤ 1− |c0|
2.

Let A denote the family of functions f in H normalized by f(0) = 0 and
f ′(0) = 1. A function f is said to be univalent in D if it is one-to-one in D.
Let S denote the class of univalent functions in A. A domain 0 ∈ Ω ⊆ C is
said to be starlike domain if the line segment joining 0 to any point in Ω must
lie in Ω. A function f ∈ A is said to be starlike function if f maps D onto a
domain f(D) which is starlike with respect to the origin. We denote the class
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of univalent starlike functions in A by S∗. It is well-known that a function
f ∈ A is in S∗ if and only if

Re

(

zf ′(z)

f(z)

)

> 0, z ∈ D.

A domain Ω ⊆ C is said to be convex if it is starlike with respect to every point
in Ω. A function f ∈ A is said to be convex if f(D) is a convex domain. We
denote the class of convex univalent functions in D by C. A function f ∈ A is
in C if and only if

Re

(

1 +
zf ′′(z)

f ′(z)

)

> 0, z ∈ D.

It is well-known that f ∈ C if and only if zf ′ ∈ S∗. A function f ∈ A is said to
be close-to-convex if there exists a convex univalent function g and a number
φ ∈ R such that

Re

(

eiφ
f ′(z)

g′(z)

)

> 0 for z ∈ D.

Let K denote the class of close-to-convex functions f in A. It is well-known
that every close-to-convex function is univalent in D. For the basic properties
of functions in these subclasses, we refer to [4].

2. Preliminaries

For 1 ≤ α < 2, let F(α) denote the class of locally univalent functions f in
the class A satisfying the condition

Re (Pf (z)) >
α

2
− 1 for z ∈ D,

where

Pf (z) = 1 +
zf ′′(z)

f ′(z)
.

In particular by taking α = 1, the class F(α) reduces to the following class

F := F(1) =

{

f ∈ A : RePf (z) > −
1

2
for z ∈ D

}

.

It is known that F ⊆ K (see [20, 21]). In [22], the region of variability for
functions in the class F has been studied. The sharp arclength for functions
in F(α) has been investigated in [23]. For the recent investigation about the
class F we refer to [16]. For a detailed discussion about these classes we refer
to [20, 21].

For a locally univalent function f(z) = z +
∑

∞

n=2 anz
n in the unit disk D,

the quantities

Tf(z) :=
f ′′(z)

f ′(z)
and Sf (z) :=

(

f ′′(z)

f ′(z)

)

′

−
1

2

(

f ′′(z)

f ′(z)

)2

represent the pre-Schwarzian and Schwarzian derivative respectively (see [9,
17]). The quantity a3 − a22 represents 1

6Sf (0). For a real (or more generally, a
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complex) number λ, the coefficient functional φλ(f) = a3−λa22 for functions f
in the class A plays vital role in the theory of univalent functions. For instance,
maximizing |φλ(f)| over the class S or on its subclasses is called the Fekete-
Szegö problem. By means of Loewner’s method, M. Fekete and G. Szegö [5]
obtained the following estimate

(2.1)
∣

∣a3 − λa22
∣

∣ ≤ 1 + 2 exp

(

−2λ

1− λ

)

for f ∈ S in the case that λ is a real parameter, 0 ≤ λ < 1. Although
Koebe function z/(1− z)2 is an extremal for many problems in the class S and
various subclasses of S, it is interesting to see that Koebe function fails to be
an extremal for Fekete-Szegö problem for 0 < λ < 1. The inequality (2.1) is
sharp in the following sense that for each λ in [0, 1), there exists a function
f ∈ S for which equality holds.

In 1987, W. Koepf [10] solved Fekete-Szegö problem for functions that are
close-to-convex. In the same year, Koepf [11] generalized Fekete-Szegö prob-
lem for functions that are close-to-convex of order β. In 1985, Pfluger [18]
employed the variational method to give yet another treatment of the Fekete-
Szegö inequality, including a description of the image domains under extremal
functions. In 1986, Jenkins [7] obtained Fekete-Szegö inequality (2.1) by means
of his general coefficient theorem [6]. Using Jenkins’ method, Pfluger [19] has
shown that

(2.2)
∣

∣a3 − λa22
∣

∣ ≤ 1 + 2

∣

∣

∣

∣

exp

(

−2λ

1− λ

)
∣

∣

∣

∣

holds for complex λ in the unit disk D with Re
(

1
1−λ

)

≥ 1. The interesting

fact is that the inequality (2.2) is sharp if and only if λ is in a certain “pear”
shaped subdomain of the disk given by

λ = 1−
(u+ iθv)

(u2 + v2)
, −1 ≤ θ ≤ 1

where

u = 1− log(cos τ) and v = tan τ − τ, 0 < τ < π/2.

Ma and Minda [13, 14, 15] gave a complete answer to the Fekete-Szegö prob-
lem for the classes of strongly close-to-convex functions and strongly starlike
functions. Motivated by the work of Ma and Minda (see [14]), a new method
for solving the Fekete-Szegö problem for classes of close-to-convex functions
defined in terms of subordination has been investigated by Choi, Kim and Sug-
awa [3]. Fekete-Szegö problem has long and rich history in the literature (see
for instance, [1, 2, 8, 12]).

In the present paper, we shall solve the Fekete-Szegö problem for functions
in the class F(α) with complex parameter λ. In particular (by taking α = 1)
we shall obtain the sharp bound for the Fekete-Szegö functional for functions
in the class F .
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3. Main results

Theorem 3.1. Let f(z) = z +
∑

∞

n=2 anz
n ∈ F(α) and λ ∈ C. Then we have

|a3 − λa2
2|(3.2)

≤











1
6 (4 − α)

∣

∣1 + 1
2 (4− α)(2 − 3λ)

∣

∣ for

∣

∣

∣
λ− 10−2α

3(4−α)

∣

∣

∣
≥ 2

3(4−α)

1
6 (4 − α) for

∣

∣

∣
λ− 10−2α

3(4−α)

∣

∣

∣
< 2

3(4−α) .

The inequality (3.2) is sharp.

Proof. Let f ∈ F(α) be given by

(3.3) f(z) = z +

∞
∑

k=2

akz
k.

Then Re (1 + zf ′′(z)/f ′(z)) > α
2 − 1 for z ∈ D, which is equivalent to

Re

(

2−
α

2
+ z

f ′′(z)

f ′(z)

)

> 0 for z ∈ D.

Let

(3.4) ˜Pf (z) =

(

2− α
2 + z

f ′′(z)
f ′(z)

)

(2− α
2 )

for z ∈ D.

Then clearly ˜Pf (0) = 1 and Re ˜Pf (z) > 0 in D. Therefore there exists an
analytic function ω ∈ B of the form (1.1) such that

(3.5) ˜Pf (z) =
1 + zω(z)

1− zω(z)
.

From (3.4) and (3.5) we see that
(

2−
α

2
+ z

f ′′(z)

f ′(z)

)

(1− zω(z)) = (1 + zω(z))(2− α/2),

which is equivalent to

(3.6) zf ′′(z)(1− zω(z)) = (4− α)zω(z)f ′(z).

By simplifying (3.6) using the series representations in (1.1) and (3.3) we obtain

(3.7)

{

zf ′′(z)(1− zω(z)) = 2a2z + (6a3 − 2a2c0)z
2 + · · · and

(4− α)zω(z)f ′(z) = (4 − α)c0z + (4− α)(2a2c0 + c1)z
2 + · · · .

On comparing the coefficients of z and z2 using (3.6) and (3.7), we obtain
a2 = 1

2 (4− α)c0 and

(3.8) 6a3 = 2a2c0 + (4− α)(2a2c0 + c1).



FEKETE-SZEGÖ INEQUALITY 1941

Using the representation of a2 = 1
2 (4− α)c0 in (3.8), we obtain

a3 =
1

6
(4− α)

(

(5 − α)c20 + c1
)

.

Thus we consider

a3 − λa22 =
(4− α)

6

(

(5− α)c20 + c1
)

−
λ

4
(4 − α)2c20(3.9)

=
(4− α)

6

(

c1 +

(

(5 − α)−
3

2
λ(4 − α)

)

c20

)

=
(4− α)

6

(

c1 +

(

1 +
1

2
(4− α)(2 − 3λ)

)

c20

)

=
(4− α)

6

(

c1 + γ(α)c20
)

,

where γ(α) = 1+ 1
2 (4−α)(2− 3λ). By applying the inequalities (1.2) in (3.9),

we see that

∣

∣a3 − λa22
∣

∣ ≤
(4 − α)

6

(

|c1|+ |γ(α)||c0|
2
)

≤
(4 − α)

6

(

1− |c0|
2 + |γ(α)||c0|

2
)

≤
(4 − α)

6

(

1 + (|γ(α)| − 1)|c0|
2
)

.

Hence we obtain

(3.10)
∣

∣a3 − λa22
∣

∣ ≤

{

1
6 (4− α)|γ(α)| for |γ(α)| ≥ 1

1
6 (4− α) for |γ(α)| < 1.

We note that |γ(α)| < 1 if and only if
∣

∣

∣
λ− 10−2α

3(4−α)

∣

∣

∣
< 2

3(4−α) . Finally, (3.10)

reduces to

∣

∣a3 − λa22
∣

∣ ≤















1
6 (4− α)

∣

∣1 + 1
2 (4− α)(2 − 3λ)

∣

∣ for
∣

∣

∣
λ− 10−2α

3(4−α)

∣

∣

∣
≥ 2

3(4−α)

1
6 (4− α) for

∣

∣

∣
λ− 10−2α

3(4−α)

∣

∣

∣
< 2

3(4−α) .

To show the first inequality in (3.2) is sharp, we consider

f0(z) =
1

3− α

(

1

(1 − z)(3−α)
− 1

)

(3.11)

= z +
1

2
(4 − α)z2 +

1

6
(20− 9α+ α2)z3 + · · · .

From (3.11), it is easy to see that

Pf0(z) = 1 + z
f ′′

0 (z)

f ′

0(z)
= 1 + (4 − α)

z

1− z
.
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Therefore, RePf0 (z) > α
2 − 1 for z ∈ D. This shows that f0 ∈ F(α). From

(3.11), we have a2 := a2(f0) =
1
2 (4 − α) and a3 := a3(f0) =

1
6 (4 − α)(5 − α).

A simple computation shows that

a3 − λa22 =
1

6
(4− α)(5 − α)−

λ

4
(4− α)2

=
(4 − α)

6

(

5− α−
3

2
λ(4 − α)

)

=
(4 − α)

6

(

1 +
1

2
(4− α)(2 − 3λ)

)

.

This shows that the first inequality in (3.2) is sharp. To show the second
inequality in (3.2) is sharp, we consider the function f1(z) defined by

f ′

1(z) =
1

(1− z2)(2−α/2)

= 1 +
1

2
(4 − α)z2 +

1

8
(24− 10α+ α2)z4 + · · · .

It is easy to see that f1(z) = z + 1
6 (4 − α)z3 + 1

40 (24 − 10α + α2)z5 + · · · . A
simple computation shows that

Pf1 (z) = 1 + z
f ′′

1 (z)

f ′

1(z)
= 1 + (4− α)

z2

1− z2
.

Therefore f1 ∈ F(α) because RePf1(z) > α
2 − 1 for z ∈ D. From the series

representation of f1(z), we have a2 := a2(f1) = 0 and a3 := a3(f1) =
1
6 (4−α).

This shows that the second inequality in (3.2) is sharp. �

In particular by letting α = 1 in Theorem 3.1 we obtain the Fekete-Szegö
inequality for functions in the class F .

Corollary 3.12. Let f(z) = z +
∑

∞

n=2 anz
n ∈ F and λ ∈ C. Then we have

(3.13) |a3 − λa2
2| ≤







∣

∣2− 9
4λ

∣

∣ for
∣

∣λ− 8
9

∣

∣ ≥ 2
9

1
2 for

∣

∣λ− 8
9

∣

∣ < 2
9 .

The inequality (3.13) is sharp.
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