Browse > Article
http://dx.doi.org/10.4134/BKMS.2015.52.6.1937

FEKETE-SZEGÖ PROBLEM FOR CERTAIN SUBCLASSES OF UNIVALENT FUNCTIONS  

VASUDEVARAO, ALLU (Department of Mathematics Indian Institute of Technology Khargpur)
Publication Information
Bulletin of the Korean Mathematical Society / v.52, no.6, 2015 , pp. 1937-1943 More about this Journal
Abstract
For $1{\leq}{\alpha}<2$, let $\mathcal{F}({\alpha})$ denote the class of locally univalent normalized analytic functions $f(z)=z+{\Sigma}_{n=2}^{\infty}{a_nz^n}$ in the unit disk ${\mathbb{D}}=\{z{\in}{\mathbb{C}}:{\left|z\right|}<1\}$ satisfying the condition $Re\(1+{\frac{zf^{{\prime}{\prime}}(z)}{f^{\prime}(z)}}\)>{\frac{{\alpha}}{2}}-1$. In the present paper, we shall obtain the sharp upper bound for Fekete-$Szeg{\ddot{o}}$ functional $|a_3-{\lambda}a_2^2|$ for the complex parameter ${\lambda}$.
Keywords
univalent functions; starlike; convex; close-to-convex and Fekete-$Szeg{\ddot{o}}$ problem;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. R. Abdel-Gawad and D. K. Thomas, The Fekete-Szego problem for strongly closeto- convex functions, Proc. Amer. Math. Soc. 114 (1992), no. 2, 345-349.   DOI
2 B. Bhowmik, S. Ponnusamy, and K.-J Wirths, On the Fekete-Szego problem for concave univalent functions, J. Math. Anal. Appl. 373 (2011), no. 2, 432-438.   DOI
3 J. H. Choi, Y. C. Kim, and T. Sugawa, A general approach to the Fekete-Szego problem, J. Math. Soc. Japan. 59 (2007), no. 3, 707-727.   DOI
4 P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo, Springer-Verlag, 1983.
5 M. Fekete and G. Szego, Eine Bemerkung uber ungerade schlichte Funktionen, J. London Math. Soc. 8 (1933), 85-89.
6 J. A. Jenkins, A general coefficient theorem, Trans. Amer. Math. Soc. 77 (1954), 262- 280.   DOI
7 J. A. Jenkins, On Certain Coefficients of Univalent Funcions, Analytic Functions, Princeton University press, Princeton, N.J., 1960.
8 F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), no. 1, 8-12.   DOI
9 Y. C. Kim and T. Sugawa, Norm estimates of the pre-Schwarzian derivatives for certain classes of univalent functions, Proc. Edinb. Math. Soc. 49 (2006), no. 1, 131-143.   DOI
10 W. Koepf, On the Fekete-Szego problem for close-to-convex functions, Proc. Amer. Math. Soc. 101 (1987), no. 1, 89-95.   DOI
11 W. Koepf, On the Fekete-Szego problem for close-to-convex functions II, Arch. Math. (Basel) 49 (1987), no. 5, 420-433.   DOI
12 R. R. London, Fekete-Szego inequalities for close-to-convex functions, Proc. Amer. Math. Soc. 117 (1993), no. 4, 947-950.   DOI
13 W. Ma and D. Minda, An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Sk lodowska, Sect. A 45 (1991), 89-97.
14 W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the Conference on Complex Analysis, pp. 157-169, (eds. Z. Li, F. Ren, L. Yang and S. Zhang), International Press Inc., 1992.
15 W. Ma and D. Minda, Coefficient inequalities for strongly close-to-convex functions, J. Math. Anal. Appl. 205 (1997), no. 2, 537-553.   DOI
16 A. Pfluger, The Fekete-Szego inequality for complex parameters, Complex Variables Theory Appl. 7 (1986), no. 1-3, 149-160.   DOI
17 Y. A. Muhanna, L. Li, and S. Ponnusamy, Extremal problems on the class of convex functions of order -$\frac{1}{2}$, Arch. Math. (Basel) 103 (2014), no. 6, 461-471.
18 Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551.   DOI
19 A. Pfluger, The Fekete-Szego inequality by a variational method, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 447-454.   DOI
20 S. Ponnusamy and S. Rajasekaran, New sufficient conditions for starlike and univalent functions, Soochow J. Math. 21 (1995), no. 2, 193-201.
21 S. Ponnusamy and V. Singh, Univalence of certain integral transforms, Glas. Mat. Ser. III (51) 31 (1996), no. 2, 253-261.
22 S. Ponnusamy and A. Vasudevarao, Region of variability of two subclasses of univalent functions, J. Math. Anal. Appl. 332 (2007), no. 2, 1323-1334.   DOI
23 A. Vasudevarao, An arclength problem for some subclasses of univalent functions, J. Analysis (2014) to appear.