• Title/Summary/Keyword: Yeast two-hybrid

Search Result 231, Processing Time 0.078 seconds

Surface expression of TTYH2 is attenuated by direct interaction with β-COP

  • Ryu, Jiwon;Kim, Dong-Gyu;Lee, Young-Sun;Bae, Yeonju;Kim, Ajung;Park, Nammi;Hwang, Eun Mi;Park, Jae-Yong
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.445-450
    • /
    • 2019
  • TTYH2 is a calcium-activated, inwardly rectifying anion channel that has been shown to be related to renal cancer and colon cancer. Based on the topological prediction, TTYH2 protein has five transmembrane domains with the extracellular N-terminus and the cytoplasmic C-terminus. In the present study, we identified a vesicle transport protein, ${\beta}$-COP, as a novel specific binding partner of TTYH2 by yeast two-hybrid screening using a human brain cDNA library with the C-terminal region of TTYH2 (TTYH2-C) as a bait. Using in vitro and in vivo binding assays, we confirmed the protein-protein interactions between TTYH2 and ${\beta}$-COP. We also found that the surface expression and activity of TTYH2 were decreased by co-expression with ${\beta}$-COP in the heterologous expression system. In addition, ${\beta}$-COP associated with TTYH2 in a native condition at a human colon cancer cell line, LoVo cells. The over-expression of ${\beta}$-COP in the LoVo cells led to a dramatic decrease in the surface expression and activity of endogenous TTYH2. Collectively, these data suggested that ${\beta}$-COP plays a critical role in the trafficking of the TTYH2 channel to the plasma membrane.

Suppressor of Variegation 3-9 Homolog 2, a Novel Binding Protein of Translationally Controlled Tumor Protein, Regulates Cancer Cell Proliferation

  • Kim, A-Reum;Sung, Jee Young;Rho, Seung Bae;Kim, Yong-Nyun;Yoon, Kyungsil
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.231-239
    • /
    • 2019
  • Suppressor of Variegation 3-9 Homolog 2 (SUV39H2) methylates the lysine 9 residue of histone H3 and induces heterochromatin formation, resulting in transcriptional repression or silencing of target genes. SUV39H1 and SUV39H2 have a role in embryonic development, and SUV39H1 was shown to suppress cell cycle progression associated with Rb. However, the function of human SUV39H2 has not been extensively studied. We observed that forced expression of SUV39H2 decreased cell proliferation by inducing $G_1$ cell cycle arrest. In addition, SUV39H2 was degraded through the ubiquitin-proteasomal pathway. Using yeast two-hybrid screening to address the degradation mechanism and function of SUV39H2, we identified translationally controlled tumor protein (TCTP) as an SUV39H2-interacting molecule. Mapping of the interacting regions indicated that the N-terminal 60 amino acids (aa) of full-length SUV39H2 and the C-terminus of TCTP (120-172 aa) were critical for binding. The interaction of SUV39H2 and TCTP was further confirmed by co-immunoprecipitation and immunofluorescence staining for colocalization. Moreover, depletion of TCTP by RNAi led to up-regulation of SUV39H2 protein, while TCTP overexpression reduced SUV39H2 protein level. The half-life of SUV39H2 protein was significantly extended upon TCTP depletion. These results clearly indicate that TCTP negatively regulates the expression of SUV39H2 post-translationally. Furthermore, SUV39H2 induced apoptotic cell death in TCTP-knockdown cells. Taken together, we identified SUV39H2, as a novel target protein of TCTP and demonstrated that SUV39H2 regulates cell proliferation of lung cancer cells.

Hepatitis B Virus DNA Polymerase Displays an Anti-Apoptotic Effect by Interacting with Elongation Factor-1 Alpha-2 in Hepatoma Cells

  • Niu, Xianli;Nong, Shirong;Gong, Junyuan;Zhang, Xin;Tang, Hui;Zhou, Tianhong;Li, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.16-24
    • /
    • 2021
  • Hepatitis B virus (HBV) genome P-encoded protein HBV DNA polymerase (Pol) has long been known as a reverse transcriptase during HBV replication. In this study, we investigated the impact of HBV Pol on host cellular processes, mainly apoptosis, and the underlying mechanisms. We showed a marked reduction in apoptotic rates in the HBV Pol-expressed HepG2 cells compared to controls. Moreover, a series of assays, i.e., yeast two-hybrid, GST pull-down, co-immunoprecipitation, and confocal laser scanning microscopy, identified the host factor eEF1A2 to be associated with HBV Pol. Furthermore, knockdown of eEF1A2 gene by siRNA abrogated the HBV Pol-mediated anti-apoptotic effect with apoptosis induced by endoplasmatic reticulum (ER) stress-inducer thapsigargin (TG), thus suggesting that the host factor eEF1A2 is essential for HBV Pol's anti-apoptosis properties. Our findings have revealed a novel role for HBV Pol in its modulation of apoptosis through integrating with eEF1A2.

Studies on the Grape Variety and the Selection of Yeast Strain for Wine-making in Korea (국내포도주(國內葡萄酒) 생산(生産)을 위(爲)한 포도(葡萄)의 품종(品種) 선택(選擇) 및 최적(最適) 효모(酵母) 균주(菌株)의 선발(選拔)에 관(關)한 연구(硏究))

  • Park, Yun-Hee
    • Applied Biological Chemistry
    • /
    • v.18 no.4
    • /
    • pp.219-227
    • /
    • 1975
  • In order to investigate the possibility of wine-making with the grape variety cultivating in Korea, the basic analysises were carried out; analysis of the grape maturity during ripening period, the composition of grape juice, and the chemical components of wine from different varieties. Also the yeasts existing naturally on the grape were isolated and identified. For the selection of strain, the characteristics of 6 strains were studied. The results obtained were summarized as follows. 1. The reducing sugar content increased considerably during two weeks after the ordinary grape-gathering period. 2. The sugar content was highest in Muscat bailey A, which could be fermented naturally. The other varieties, Campbell Early, Steuben, and Alden needed chaptalisation for wine-making. 3. The permanaganate number and the methanol content of wine from all varieties were lower than french wine. 4. The sensory evaluation of wine showed that the pink wine was appreciated better than the red wine of same variety and the foxy taste of wine from hybrid grape influenced little to Korean. 5. The selected 6 strains were identified as Saccharomyces chevaliers, Saccharomyces capensis and Saccharomyces globosus. The strain No. 3 and No. 4 showed the most excellent characters for wine-making.

  • PDF

Expression of the Floral Repressor miRNA156 is Positively Regulated by the AGAMOUS-like Proteins AGL15 and AGL18

  • Serivichyaswat, Phanu;Ryu, Hak-Seung;Kim, Wanhui;Kim, Soonkap;Chung, Kyung Sook;Kim, Jae Joon;Ahn, Ji Hoon
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.259-266
    • /
    • 2015
  • The regulation of flowering time has crucial implications for plant fitness. MicroRNA156 (miR156) represses the floral transition in Arabidopsis thaliana, but the mechanisms regulating its transcription remain unclear. Here, we show that two AGAMOUS-like proteins, AGL15 and AGL18, act as positive regulators of the expression of MIR156. Small RNA northern blot analysis revealed a significant decrease in the levels of mature miR156 in agl15 agl18 double mutants, but not in the single mutants, suggesting that AGL15 and AGL18 co-regulate miR156 expression. Histochemical analysis further indicated that the double mutants showed a reduction in MIR156 promoter strength. The double mutants also showed reduced abundance of pri-miR156a and pri-miR156c, two of the primary transcripts from MIR156 genes. Electrophoretic mobility shift assays demonstrated that AGL15 directly associated with the CArG motifs in the MIR156a/c promoters. AGL18 did not show binding affinity to the CArG motifs, but pull-down and yeast two-hybrid assays showed that AGL18 forms a heterodimer with AGL15. GFP reporter assays and bimolecular fluorescence complementation (BiFC) showed that AGL15 and AGL18 co-localize in the nucleus and confirmed their in vivo interaction. Overexpression of miR156 did not affect the levels of AGL15 and AGL18 transcripts. Taking these data together, we present a model for the transcriptional regulation of MIR156. In this model, AGL15 and AGL18 may form a complex along with other proteins, and bind to the CArG motifs of the promoters of MIR156 to activate the MIR156 expression.

Desmin Binding Property of Nebulin Isoforms

  • Jeon Eun-Hee;Lee Yeong-Mi;Lee Min-A;Kim Ji-Hee;Choi Jae-Kyong;Park Eun-Ran;Kim Hyun-Suk;Ahn Seung-Ju;Min Byung-In;Joo Young-Mi;Kim Chong-Rak
    • Biomedical Science Letters
    • /
    • v.12 no.2
    • /
    • pp.73-79
    • /
    • 2006
  • Nebulin is a giant ($600{\sim}900$ kDa), modular sarcomeric protein proposed to regulate the assembly, and to specify the precise lengths of actin filamints in vertebrate skeletal muscles. Recently, There is an evidence that the nebulin also expressed in non muscle tissue, brain and liver. We identified a new isoform of nebulin from adult brain library by PCR screening. It contains two simple-repeats exon 165, 166 and linker-repeats exon $154{\sim}161$ except exon 159. The nebulin modules M160 to M170 (exon 150 to exon 161) has been shown to bind desmin. In mature striated muscle, desmin intermediate filaments surround Z-discs and link individual myofibrils laterally at their Z-discs and to other intracellular structures, including the costameres and the intercalated discs of the sarcolemma, sarcoplasmic reticulum, mitochondria, T-tubules, and nuclei. Therefore, it is an interesting possibility that the differential splice pathways within the linker region of nebulin modify the affinity of nebulin's interaction with desmin. The specific interactions of nebulin and desmin were confirmed in vivo by yeast two hybrid experiments. To verify in the cellular level the interaction between nebulin isoform and desmin, we transfected COS-7 cell with EGFP-tagged nebulin and DsRed-tagged desmin. Based on evidence showing that despite exon 159 was deleted, the new isoform of nebulin was interact with desmin. This suggest that nebulin in brain may interact with another intermediate filament. The conservation of these ligand-binding capacity in brain and skeletal nebulins suggest that nebulins may have conserved roles in brain and skeletal muscle.

  • PDF

PRIP, a Novel Ins(1,4,5)P3 Binding Protein, Functional Significance in Ca2+ Signaling and Extension to Neuroscience and Beyond

  • Kanematsu, Takashi;Takeuchi, Hiroshi;Terunuma, Miho;Hirata, Masato
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.305-314
    • /
    • 2005
  • Investigation of chemically synthesized inositol 1,4,5-trisphosphate [$Ins(1,4,5)P_3$] analogs has led to the isolation of a novel binding protein with a molecular size of 130 kDa, characterized as a molecule with similar domain organization to phospholipase C-${\delta}1$ (PLC-${\delta}1$) but lacking the enzymatic activity. An isoform of the molecule was subsequently identified, and these molecules have been named PRIP (PLC-related, but catalytically inactive protein), with the two isoforms named PRIP-1 and -2. Regarding its ability to bind $Ins(1,4,5)P_3$ via the pleckstrin homology domain, the involvement of PRIP-1 in $Ins(1,4,5)P_3$-mediated $Ca^{2+}$ signaling was examined using COS-1 cells overexpressing PRIP-1 and cultured neurons prepared from PRIP-1 knock-out mice. Yeast two hybrid screening of a brain cDNA library using a unique N-terminus as bait identified GABARAP ($GABA_A$ receptor associated protein) and PP1 (protein phosphatase 1), which led us to examine the possible involvement of PRIP in $GABA_A$ receptor signaling. For this purpose PRIP knock-out mice were analyzed for $GABA_A$ receptor function in relation to the action of benzodiazepines from the electrophysiological and behavioral aspects. During the course of these experiments we found that PRIP also binds to the b-subunit of $GABA_A$ receptors and PP2A (protein phosphtase 2A). Here, we summarize how PRIP is involved in $Ins(1,4,5)P_3$-mediated $Ca^{2+}$ signaling and $GABA_A$ receptor signaling based on the characteristics of binding molecules.

The Carboxyl-terminal Tail of a Heterotrimeric Kinesin 2 Motor Subunit Directly Binds to β2-tubulin (Heterotrimeric Kinesin 2 모터 단백질의 Carboxyl-말단과 β2-tubulin의 결합)

  • Jeong, Young Joo;Park, Sung Woo;Kim, Sang-Jin;Lee, Won Hee;Kim, Mooseong;Urm, Sang-Hwa;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.369-375
    • /
    • 2019
  • Microtubules form through the polymerization of ${\alpha}-$ and ${\beta}-tubulin$, and tubulin transport plays an important role in defining the rate of microtubule growth inside cellular appendages, such as the cilia and flagella. Heterotrimeric kinesin 2 is a molecular motor member of the kinesin superfamily (KIF) that moves along the microtubules to transport multiple cargoes. It consists of two motor subunits (KIF3A and KIF3B) and a kinesin-associated protein 3 (KAP3), forming a heterotrimeric complex. Heterotrimeric kinesin 2 interacts with many different binding proteins through the cargo-binding domains of the KIF3s, but these binding proteins have not yet been specified. To identify these proteins for KIF3A, we performed yeast two-hybrid (Y2H) screening and found a specific interaction with ${\beta}2-tubulin$ (Tubb2), a microtubule component. Tubb2 was found to bind to the cargo-binding domain of KIF3A but did not interact with KIF3B, KIF5B, or kinesin light chain 1 in the Y2H assay. The carboxyl-terminal region of Tubb2 is essential for interaction with KIF3A. Other Tubb isoforms, including Tubb1, Tubb3, Tubb4, and Tubb5, also interacted with KIF3A in the Y2H screening. However, ${\alpha}1-tubulin$ (Tuba1) did not interact with KIF3A. In addition, an antibody to KIF3A specifically co-immunoprecipitated the KIF3B and KAP3 associated with Tubb2 from mouse brain extracts. In combination, these results suggest that a heterotrimeric kinesin 2 motor protein is capable of binding to tubulin and may transport it in cells.

Brain-expressed X-linked 2 Binds to Kinesin Superfamily Protein 3A (Brain-expressed X-linked (Bex) 2와 heterotrimeric kinesin-2의 KIF3A와의 결합)

  • Kim, Mooseong;Jeong, Young Joo;Park, Sung Woo;Seo, Mi Kyoung;Kim, Sang Jin;Lee, Won Hee;Urm, Sang-Hwa;Lee, Jung Goo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.189-195
    • /
    • 2022
  • Kinesin-2 comprises two subfamilies of the heterotrimeric or homodimeric motors found in mammalian cells. Heterotrimeric kinesin-2 consists of kinesin superfamily proteins (KIFs) 3A and 3B and kinesin-associated protein 3 (KAP3), which is a molecular motor protein that moves along microtubules. It plays diverse roles in cargo transport, including anterograde trafficking in cilia, and interacts with many different cargoes and proteins, but their binding proteins have not yet been fully identified. In this study, the yeast two-hybrid assay was used to identify the proteins that interact with the cargo-binding domain (CBD) of KIF3A, and an interaction between KIF3A and brain expressed X-linked 2 (Bex2) was found. Bex2 bound to the CBD-containing C-terminal tail region of KIF3A but did not interact with the same region of KIF3B or KIF5A (a motor protein of kinesin-1). KIF3A interacted with another isoform, Bex1, but did not interact with Bex3. In addition, glutathione S-transferase (GST) pull-downs showed that KIF3A specifically interacts with GST-Bex1 and GST-Bex2 but not with GST alone. When co-expressed in HEK-293T cells, Bex2 co-localized with KIF3A and co-immunoprecipitated with KIF3A and KIF3B but not KIF5B. In combination, these results suggest that Bex2 is capable of binding to heterotrimeric kinesin-2 and may serve as an adaptor protein that links heterotrimeric kinesin-2 with cargo.

Glutamate-rich 4 Binds to Kinesin Superfamily Protein 5A (Glutamate-rich 4와 kinesin superfamily protein 5A와의 결합)

  • Se Young Pyo;Young Joo Jeong;Sung Woo Park;Mi Kyoung Seo;Won Hee Lee;Sang-Hwa Urm;Sang Jin Kim;Mooseong Kim;Jung Goo Lee;Dae-Hyun Seog
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Intracellular cargo transport is mediated by molecular motor proteins, such as kinesin and cytoplasmic dynein. Kinesins make up a large subfamily of molecular motors. Kinesin-1 is a plus-end-directed molecular motor protein that moves various cargoes, such as organelles, protein complexes, and mRNAs, along a microtubule track. It consists of the kinesin superfamily protein (KIF) 5A, 5B, and 5C (also called kinesin heavy chains) and kinesin light chains (KLCs). Kinesin-1 interacts with many different binding proteins through its carboxyl (C)-terminal region of KIF5s and KLCs, but their binding proteins have not yet been fully identified. In this study, a yeast two-hybrid assay was used to identify the proteins that interact with the KIF5A specific C-terminal region. The assay revealed an interaction between KIF5A and glutamate-rich 4 (ERICH4). ERICH4 bound to the KIF5A specific the C-terminal region but did not interact with the C-terminal region of KIF5B or KIF3A (a motor protein of kinesin-2). In addition, KIF5A did not interact with another isoform, ERICH1. Glutathione S-transferase (GST) pull-downs showed that KIF5A interacts with GST-ERICH4 and GST-ERICH4-amino (N)-terminal but not with GST-ERICH4-C or GST alone. When co-expressed in HEK-293T cells, ERICH4 co-localized with KIF5A and co-immunoprecipitated with KIF5A and KLC but not KIF3B. Together, our findings suggest that ERICH4 is capable of binding to KIF5A and that it may serve as an adaptor protein that links kinesin-1 with cargo.