DOI QR코드

DOI QR Code

Suppressor of Variegation 3-9 Homolog 2, a Novel Binding Protein of Translationally Controlled Tumor Protein, Regulates Cancer Cell Proliferation

  • Kim, A-Reum (Division of Translational Science, Research Institute, National Cancer Center) ;
  • Sung, Jee Young (Division of Clinical Research, Research Institute, National Cancer Center) ;
  • Rho, Seung Bae (Division of Translational Science, Research Institute, National Cancer Center) ;
  • Kim, Yong-Nyun (Division of Translational Science, Research Institute, National Cancer Center) ;
  • Yoon, Kyungsil (Division of Translational Science, Research Institute, National Cancer Center)
  • Received : 2019.01.30
  • Accepted : 2019.02.07
  • Published : 2019.03.01

Abstract

Suppressor of Variegation 3-9 Homolog 2 (SUV39H2) methylates the lysine 9 residue of histone H3 and induces heterochromatin formation, resulting in transcriptional repression or silencing of target genes. SUV39H1 and SUV39H2 have a role in embryonic development, and SUV39H1 was shown to suppress cell cycle progression associated with Rb. However, the function of human SUV39H2 has not been extensively studied. We observed that forced expression of SUV39H2 decreased cell proliferation by inducing $G_1$ cell cycle arrest. In addition, SUV39H2 was degraded through the ubiquitin-proteasomal pathway. Using yeast two-hybrid screening to address the degradation mechanism and function of SUV39H2, we identified translationally controlled tumor protein (TCTP) as an SUV39H2-interacting molecule. Mapping of the interacting regions indicated that the N-terminal 60 amino acids (aa) of full-length SUV39H2 and the C-terminus of TCTP (120-172 aa) were critical for binding. The interaction of SUV39H2 and TCTP was further confirmed by co-immunoprecipitation and immunofluorescence staining for colocalization. Moreover, depletion of TCTP by RNAi led to up-regulation of SUV39H2 protein, while TCTP overexpression reduced SUV39H2 protein level. The half-life of SUV39H2 protein was significantly extended upon TCTP depletion. These results clearly indicate that TCTP negatively regulates the expression of SUV39H2 post-translationally. Furthermore, SUV39H2 induced apoptotic cell death in TCTP-knockdown cells. Taken together, we identified SUV39H2, as a novel target protein of TCTP and demonstrated that SUV39H2 regulates cell proliferation of lung cancer cells.

Keywords

References

  1. Acunzo, J., Baylot, V., So, A. and Rocchi, P. (2014) TCTP as therapeutic target in cancers. Cancer Treat. Rev. 40, 760-769. https://doi.org/10.1016/j.ctrv.2014.02.007
  2. Adams, J. (2004) The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5, 417-421. https://doi.org/10.1016/S1535-6108(04)00120-5
  3. Ait-Si-Ali, S., Guasconi, V., Fritsch, L., Yahi, H., Sekhri, R., Naguibneva, I., Robin, P., Cabon, F., Polesskaya, A. and Harel-Bellan, A. (2004) A Suv39h-dependent mechanism for silencing S-phase genes in differentiating but not in cycling cells. EMBO J. 23, 605-615. https://doi.org/10.1038/sj.emboj.7600074
  4. Albacker, C. E., Storer, N. Y., Langdon, E. M., Dibiase, A., Zhou, Y., Langenau, D. M. and Zon, L. I. (2013) The histone methyltransferase SUV39H1 suppresses embryonal rhabdomyosarcoma formation in zebrafish. PLoS ONE 8, e64969. https://doi.org/10.1371/journal.pone.0064969
  5. Amson, R., Pece, S., Lespagnol, A., Vyas, R., Mazzarol, G., Tosoni, D., Colaluca, I., Viale, G., Rodrigues-Ferreira, S., Wynendaele, J., Chaloin, O., Hoebeke, J., Marine, J. C., Di Fiore, P. P. and Telerman, A. (2011) Reciprocal repression between P53 and TCTP. Nat. Med. 18, 91-99. https://doi.org/10.1038/nm.2546
  6. Amson, R., Pece, S., Marine, J. C., Di Fiore, P. P. and Telerman, A. (2013) TPT1/ TCTP-regulated pathways in phenotypic reprogramming. Trends Cell Biol. 23, 37-46. https://doi.org/10.1016/j.tcb.2012.10.002
  7. Amzallag, N., Passer, B. J., Allanic, D., Segura, E., Thery, C., Goud, B., Amson, R. and Telerman, A. (2004) TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J. Biol. Chem. 279, 46104-46112. https://doi.org/10.1074/jbc.M404850200
  8. Bannister, A. J., Zegerman, P., Partridge, J. F., Miska, E. A., Thomas, J. O., Allshire, R. C. and Kouzarides, T. (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120-124. https://doi.org/10.1038/35065138
  9. Bommer, U. A. and Thiele, B. J. (2004) The translationally controlled tumour protein (TCTP). Int. J. Biochem. Cell Biol. 36, 379-385. https://doi.org/10.1016/S1357-2725(03)00213-9
  10. Bommer, U. A., Vine, K. L., Puri, P., Engel, M., Belfiore, L., Fildes, K., Batterham, M., Lochhead, A. and Aghmesheh, M. (2017) Translationally controlled tumour protein TCTP is induced early in human colorectal tumours and contributes to the resistance of HCT116 colon cancer cells to 5-FU and oxaliplatin. Cell Commun. Signal. 15, 9. https://doi.org/10.1186/s12964-017-0164-3
  11. Burgess, A., Labbe, J. C., Vigneron, S., Bonneaud, N., Strub, J. M., Van Dorsselaer, A., Lorca, T. and Castro, A. (2008) Chfr interacts and colocalizes with TCTP to the mitotic spindle. Oncogene 27, 5554-5566. https://doi.org/10.1038/onc.2008.167
  12. Cans, C., Passer, B. J., Shalak, V., Nancy-Portebois, V., Crible, V., Amzallag, N., Allanic, D., Tufino, R., Argentini, M., Moras, D., Fiucci, G., Goud, B., Mirande, M., Amson, R. and Telerman, A. (2003) Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. Proc. Natl. Acad. Sci. U.S.A. 100, 13892-13897. https://doi.org/10.1073/pnas.2335950100
  13. Chen, K., Chen, S., Huang, C., Cheng, H. and Zhou, R. (2013) TCTP increases stability of hypoxia-inducible factor 1alpha by interaction with and degradation of the tumour suppressor VHL. Biol. Cell 105, 208-218. https://doi.org/10.1111/boc.201200080
  14. Chen, S. H., Wu, P. S., Chou, C. H., Yan, Y. T., Liu, H., Weng, S. Y. and Yang-Yen, H. F. (2007) A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol. Biol. Cell 18, 2525-2532. https://doi.org/10.1091/mbc.e07-02-0188
  15. Chiba, T., Saito, T., Yuki, K., Zen, Y., Koide, S., Kanogawa, N., Motoyama, T., Ogasawara, S., Suzuki, E., Ooka, Y., Tawada, A., Otsuka, M., Miyazaki, M., Iwama, A. and Yokosuka, O. (2015) Histone lysine methyltransferase SUV39H1 is a potent target for epigenetic therapy of hepatocellular carcinoma. Int. J. Cancer 136, 289-298. https://doi.org/10.1002/ijc.28985
  16. Ciechanover, A. (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79, 13-21. https://doi.org/10.1016/0092-8674(94)90396-4
  17. Deng, S. S., Xing, T. Y., Zhou, H. Y., Xiong, R. H., Lu, Y. G., Wen, B., Liu, S. Q. and Yang, H. J. (2006) Comparative proteome analysis of breast cancer and adjacent normal breast tissues in human. Genomics Proteomics Bioinformatics 4, 165-172. https://doi.org/10.1016/S1672-0229(06)60029-6
  18. Fiucci, G., Lespagnol, A., Stumptner-Cuvelette, P., Beaucourt, S., Duflaut, D., Susini, L., Amson, R. and Telerman, A. (2003) Genomic organization and expression of mouse Tpt1 gene. Genomics 81, 570-578. https://doi.org/10.1016/S0888-7543(03)00047-8
  19. Gachet, Y., Tournier, S., Lee, M., Lazaris-Karatzas, A., Poulton, T. and Bommer, U. A. (1999) The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J. Cell Sci. 112, 1257-1271. https://doi.org/10.1242/jcs.112.8.1257
  20. Gnanasekar, M., Thirugnanam, S., Zheng, G., Chen, A. and Ramaswamy, K. (2009) Gene silencing of translationally controlled tumor protein (TCTP) by siRNA inhibits cell growth and induces apoptosis of human prostate cancer cells. Int. J. Oncol. 34, 1241-1246.
  21. Gyorffy, B., Surowiak, P., Budczies, J. and Lanczky, A. (2013) Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS ONE 8, e82241. https://doi.org/10.1371/journal.pone.0082241
  22. Kang, H. S., Lee, M. J., Song, H., Han, S. H., Kim, Y. M., Im, J. Y. and Choi, I. (2001) Molecular identification of IgE-dependent histaminereleasing factor as a B cell growth factor. J. Immunol. 166, 6545-6554. https://doi.org/10.4049/jimmunol.166.11.6545
  23. Koziol, M. J., Garrett, N. and Gurdon, J. B. (2007) Tpt1 activates transcription of oct4 and nanog in transplanted somatic nuclei. Curr. Biol. 17, 801-807. https://doi.org/10.1016/j.cub.2007.03.062
  24. Kubiak, J. Z., Bazile, F., Pascal, A., Richard-Parpaillon, L., Polanski, Z., Ciemerych, M. A. and Chesnel, F. (2008) Temporal regulation of embryonic M-phases. Folia Histochem. Cytobiol. 46, 5-9.
  25. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. and Jenuwein, T. (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116-120. https://doi.org/10.1038/35065132
  26. Li, F., Zhang, D. and Fujise, K. (2001) Characterization of fortilin, a novel antiapoptotic protein. J. Biol. Chem. 276, 47542-47549. https://doi.org/10.1074/jbc.M108954200
  27. Liu, H., Peng, H. W., Cheng, Y. S., Yuan, H. S. and Yang-Yen, H. F. (2005) Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol. Cell. Biol. 25, 3117-3126. https://doi.org/10.1128/MCB.25.8.3117-3126.2005
  28. MacDonald, S. M., Rafnar, T., Langdon, J. and Lichtenstein, L. M. (1995) Molecular identification of an IgE-dependent histaminereleasing factor. Science 269, 688-690. https://doi.org/10.1126/science.7542803
  29. Miao, X., Chen, Y. B., Xu, S. L., Zhao, T., Liu, J. Y., Li, Y. R., Wang, J., Zhang, J. and Guo, G. Z. (2013) TCTP overexpression is associated with the development and progression of glioma. Tumour Biol. 34, 3357-3361. https://doi.org/10.1007/s13277-013-0906-9
  30. Narita, M., Nunez, S., Heard, E., Narita, M., Lin, A. W., Hearn, S. A., Spector, D. L., Hannon, G. J. and Lowe, S. W. (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell, 113, 703-716. https://doi.org/10.1016/S0092-8674(03)00401-X
  31. Nielsen, S. J., Schneider, R., Bauer, U. M., Bannister, A. J., Morrison, A., O'Carroll, D., Firestein, R., Cleary, M., Jenuwein, T., Herrera, R. E. and Kouzarides, T. (2001) Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561-565. https://doi.org/10.1038/35087620
  32. O'Carroll, D., Scherthan, H., Peters, A. H., Opravil, S., Haynes, A. R., Laible, G., Rea, S., Schmid, M., Lebersorger, A., Jerratsch, M., Sattler, L., Mattei, M. G., Denny, P., Brown, S. D., Schweizer, D. and Jenuwein, T. (2000) Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testisspecific expression. Mol. Cell. Biol. 20, 9423-9433. https://doi.org/10.1128/MCB.20.24.9423-9433.2000
  33. Peters, A. H., O'Carroll, D., Scherthan, H., Mechtler, K., Sauer, S., Schofer, C., Weipoltshammer, K., Pagani, M., Lachner, M., Kohlmaier, A., Opravil, S., Doyle, M., Sibilia, M. and Jenuwein, T. (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323-337. https://doi.org/10.1016/S0092-8674(01)00542-6
  34. Pickart, C. M. (2001) Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503-533. https://doi.org/10.1146/annurev.biochem.70.1.503
  35. Rao, V. K., Pal, A. and Taneja, R. (2017) A drive in SUVs: from development to disease. Epigenetics 12, 177-186. https://doi.org/10.1080/15592294.2017.1281502
  36. Rea, S., Eisenhaber, F., O'Carroll, D., Strahl, B. D., Sun, Z. W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C. P., Allis, C. D. and Jenuwein, T. (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593-599. https://doi.org/10.1038/35020506
  37. Rho, S. B., Lee, J. H., Park, M. S., Byun, H. J., Kang, S., Seo, S. S., Kim, J. Y. and Park, S. Y. (2011) Anti-apoptotic protein TCTP controls the stability of the tumor suppressor p53. FEBS Lett. 585, 29-35. https://doi.org/10.1016/j.febslet.2010.11.014
  38. Rho, S. B., Lee, K. H., Kim, J. W., Shiba, K., Jo, Y. J. and Kim, S. (1996) Interaction between human tRNA synthetases involves repeated sequence elements. Proc. Natl. Acad. Sci. U.S.A. 93, 10128-10133. https://doi.org/10.1073/pnas.93.19.10128
  39. Shuai, W., Wu, J., Chen, S., Liu, R., Ye, Z., Kuang, C., Fu, X., Wang, G., Li, Y., Peng, Q., Shi, W., Li, Y., Zhou, Q. and Huang, W. (2018) SUV39H2 promotes colorectal cancer proliferation and metastasis via tri-methylation of the SLIT1 promoter. Cancer Lett. 422, 56-69. https://doi.org/10.1016/j.canlet.2018.02.023
  40. Susini, L., Besse, S., Duflaut, D., Lespagnol, A., Beekman, C., Fiucci, G., Atkinson, A. R., Busso, D., Poussin, P., Marine, J. C., Martinou, J. C., Cavarelli, J., Moras, D., Amson, R. and Telerman, A. (2008) TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ. 15, 1211-1220. https://doi.org/10.1038/cdd.2008.18
  41. Tani, T., Shimada, H., Kato, Y. and Tsunoda, Y. (2007) Bovine oocytes with the potential to reprogram somatic cell nuclei have a unique 23-kDa protein, phosphorylated transcriptionally controlled tumor protein (TCTP). Cloning Stem Cells 9, 267-280. https://doi.org/10.1089/clo.2006.0072
  42. Telerman, A. and Amson, R. (2009) The molecular programme of tumour reversion: the steps beyond malignant transformation. Nat. Rev. Cancer 9, 206-216. https://doi.org/10.1038/nrc2589
  43. Thebault, S., Agez, M., Chi, X., Stojko, J., Cura, V., Telerman, S. B., Maillet, L., Gautier, F., Billas-Massobrio, I., Birck, C., Troffer-Charlier, N., Karafin, T., Honore, J., Senff-Ribeiro, A., Montessuit, S., Johnson, C. M., Juin, P., Cianferani, S., Martinou, J. C., Andrews, D. W., Amson, R., Telerman, A. and Cavarelli, J. (2016) TCTP contains a BH3-like domain, which instead of inhibiting, activates BclxL. Sci. Rep. 6, 19725. https://doi.org/10.1038/srep19725
  44. Tuynder, M., Fiucci, G., Prieur, S., Lespagnol, A., Geant, A., Beaucourt, S., Duflaut, D., Besse, S., Susini, L., Cavarelli, J., Moras, D., Amson, R. and Telerman, A. (2004) Translationally controlled tumor protein is a target of tumor reversion. Proc. Natl. Acad. Sci. U.S.A. 101, 15364-15369. https://doi.org/10.1073/pnas.0406776101
  45. Tuynder, M., Susini, L., Prieur, S., Besse, S., Fiucci, G., Amson, R. and Telerman, A. (2002) Biological models and genes of tumor reversion: cellular reprogramming through tpt1/TCTP and SIAH-1. Proc. Natl. Acad. Sci. U.S.A. 99, 14976-14981. https://doi.org/10.1073/pnas.222470799
  46. Vandel, L., Nicolas, E., Vaute, O., Ferreira, R., Ait-Si-Ali, S. and Trouche, D. (2001) Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol. Cell. Biol. 21, 6484-6494. https://doi.org/10.1128/MCB.21.19.6484-6494.2001
  47. Yarm, F. R. (2002) Plk phosphorylation regulates the microtubule-stabilizing protein TCTP. Mol. Cell. Biol. 22, 6209-6221. https://doi.org/10.1128/MCB.22.17.6209-6221.2002
  48. Yoon, K. A., Hwangbo, B., Kim, I. J., Park, S., Kim, H. S., Kee, H. J., Lee, J. E., Jang, Y. K., Park, J. G. and Lee, J. S. (2006) Novel polymorphisms in the SUV39H2 histone methyltransferase and the risk of lung cancer. Carcinogenesis 27, 2217-2222. https://doi.org/10.1093/carcin/bgl084
  49. Zhang, F., Liu, B., Wang, Z., Yu, X. J., Ni, Q. X., Yang, W. T., Mukaida, N. and Li, Y. Y. (2013) A novel regulatory mechanism of Pim-3 kinase stability and its involvement in pancreatic cancer progression. Mol. Cancer Res. 11, 1508-1520. https://doi.org/10.1158/1541-7786.MCR-13-0389
  50. Zheng, Y., Li, B., Wang, J., Xiong, Y., Wang, K., Qi, Y., Sun, H., Wu, L. and Yang, L. (2018) Identification of SUV39H2 as a potential oncogene in lung adenocarcinoma. Clin. Epigenetics 10, 129. https://doi.org/10.1186/s13148-018-0562-4

Cited by

  1. Structure, Activity and Function of the Suv39h1 and Suv39h2 Protein Lysine Methyltransferases vol.11, pp.7, 2019, https://doi.org/10.3390/life11070703