References
- Acunzo, J., Baylot, V., So, A. and Rocchi, P. (2014) TCTP as therapeutic target in cancers. Cancer Treat. Rev. 40, 760-769. https://doi.org/10.1016/j.ctrv.2014.02.007
- Adams, J. (2004) The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5, 417-421. https://doi.org/10.1016/S1535-6108(04)00120-5
- Ait-Si-Ali, S., Guasconi, V., Fritsch, L., Yahi, H., Sekhri, R., Naguibneva, I., Robin, P., Cabon, F., Polesskaya, A. and Harel-Bellan, A. (2004) A Suv39h-dependent mechanism for silencing S-phase genes in differentiating but not in cycling cells. EMBO J. 23, 605-615. https://doi.org/10.1038/sj.emboj.7600074
- Albacker, C. E., Storer, N. Y., Langdon, E. M., Dibiase, A., Zhou, Y., Langenau, D. M. and Zon, L. I. (2013) The histone methyltransferase SUV39H1 suppresses embryonal rhabdomyosarcoma formation in zebrafish. PLoS ONE 8, e64969. https://doi.org/10.1371/journal.pone.0064969
- Amson, R., Pece, S., Lespagnol, A., Vyas, R., Mazzarol, G., Tosoni, D., Colaluca, I., Viale, G., Rodrigues-Ferreira, S., Wynendaele, J., Chaloin, O., Hoebeke, J., Marine, J. C., Di Fiore, P. P. and Telerman, A. (2011) Reciprocal repression between P53 and TCTP. Nat. Med. 18, 91-99. https://doi.org/10.1038/nm.2546
- Amson, R., Pece, S., Marine, J. C., Di Fiore, P. P. and Telerman, A. (2013) TPT1/ TCTP-regulated pathways in phenotypic reprogramming. Trends Cell Biol. 23, 37-46. https://doi.org/10.1016/j.tcb.2012.10.002
- Amzallag, N., Passer, B. J., Allanic, D., Segura, E., Thery, C., Goud, B., Amson, R. and Telerman, A. (2004) TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J. Biol. Chem. 279, 46104-46112. https://doi.org/10.1074/jbc.M404850200
- Bannister, A. J., Zegerman, P., Partridge, J. F., Miska, E. A., Thomas, J. O., Allshire, R. C. and Kouzarides, T. (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120-124. https://doi.org/10.1038/35065138
- Bommer, U. A. and Thiele, B. J. (2004) The translationally controlled tumour protein (TCTP). Int. J. Biochem. Cell Biol. 36, 379-385. https://doi.org/10.1016/S1357-2725(03)00213-9
- Bommer, U. A., Vine, K. L., Puri, P., Engel, M., Belfiore, L., Fildes, K., Batterham, M., Lochhead, A. and Aghmesheh, M. (2017) Translationally controlled tumour protein TCTP is induced early in human colorectal tumours and contributes to the resistance of HCT116 colon cancer cells to 5-FU and oxaliplatin. Cell Commun. Signal. 15, 9. https://doi.org/10.1186/s12964-017-0164-3
- Burgess, A., Labbe, J. C., Vigneron, S., Bonneaud, N., Strub, J. M., Van Dorsselaer, A., Lorca, T. and Castro, A. (2008) Chfr interacts and colocalizes with TCTP to the mitotic spindle. Oncogene 27, 5554-5566. https://doi.org/10.1038/onc.2008.167
- Cans, C., Passer, B. J., Shalak, V., Nancy-Portebois, V., Crible, V., Amzallag, N., Allanic, D., Tufino, R., Argentini, M., Moras, D., Fiucci, G., Goud, B., Mirande, M., Amson, R. and Telerman, A. (2003) Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. Proc. Natl. Acad. Sci. U.S.A. 100, 13892-13897. https://doi.org/10.1073/pnas.2335950100
- Chen, K., Chen, S., Huang, C., Cheng, H. and Zhou, R. (2013) TCTP increases stability of hypoxia-inducible factor 1alpha by interaction with and degradation of the tumour suppressor VHL. Biol. Cell 105, 208-218. https://doi.org/10.1111/boc.201200080
- Chen, S. H., Wu, P. S., Chou, C. H., Yan, Y. T., Liu, H., Weng, S. Y. and Yang-Yen, H. F. (2007) A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol. Biol. Cell 18, 2525-2532. https://doi.org/10.1091/mbc.e07-02-0188
- Chiba, T., Saito, T., Yuki, K., Zen, Y., Koide, S., Kanogawa, N., Motoyama, T., Ogasawara, S., Suzuki, E., Ooka, Y., Tawada, A., Otsuka, M., Miyazaki, M., Iwama, A. and Yokosuka, O. (2015) Histone lysine methyltransferase SUV39H1 is a potent target for epigenetic therapy of hepatocellular carcinoma. Int. J. Cancer 136, 289-298. https://doi.org/10.1002/ijc.28985
- Ciechanover, A. (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79, 13-21. https://doi.org/10.1016/0092-8674(94)90396-4
- Deng, S. S., Xing, T. Y., Zhou, H. Y., Xiong, R. H., Lu, Y. G., Wen, B., Liu, S. Q. and Yang, H. J. (2006) Comparative proteome analysis of breast cancer and adjacent normal breast tissues in human. Genomics Proteomics Bioinformatics 4, 165-172. https://doi.org/10.1016/S1672-0229(06)60029-6
- Fiucci, G., Lespagnol, A., Stumptner-Cuvelette, P., Beaucourt, S., Duflaut, D., Susini, L., Amson, R. and Telerman, A. (2003) Genomic organization and expression of mouse Tpt1 gene. Genomics 81, 570-578. https://doi.org/10.1016/S0888-7543(03)00047-8
- Gachet, Y., Tournier, S., Lee, M., Lazaris-Karatzas, A., Poulton, T. and Bommer, U. A. (1999) The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J. Cell Sci. 112, 1257-1271. https://doi.org/10.1242/jcs.112.8.1257
- Gnanasekar, M., Thirugnanam, S., Zheng, G., Chen, A. and Ramaswamy, K. (2009) Gene silencing of translationally controlled tumor protein (TCTP) by siRNA inhibits cell growth and induces apoptosis of human prostate cancer cells. Int. J. Oncol. 34, 1241-1246.
- Gyorffy, B., Surowiak, P., Budczies, J. and Lanczky, A. (2013) Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS ONE 8, e82241. https://doi.org/10.1371/journal.pone.0082241
- Kang, H. S., Lee, M. J., Song, H., Han, S. H., Kim, Y. M., Im, J. Y. and Choi, I. (2001) Molecular identification of IgE-dependent histaminereleasing factor as a B cell growth factor. J. Immunol. 166, 6545-6554. https://doi.org/10.4049/jimmunol.166.11.6545
- Koziol, M. J., Garrett, N. and Gurdon, J. B. (2007) Tpt1 activates transcription of oct4 and nanog in transplanted somatic nuclei. Curr. Biol. 17, 801-807. https://doi.org/10.1016/j.cub.2007.03.062
- Kubiak, J. Z., Bazile, F., Pascal, A., Richard-Parpaillon, L., Polanski, Z., Ciemerych, M. A. and Chesnel, F. (2008) Temporal regulation of embryonic M-phases. Folia Histochem. Cytobiol. 46, 5-9.
- Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. and Jenuwein, T. (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116-120. https://doi.org/10.1038/35065132
- Li, F., Zhang, D. and Fujise, K. (2001) Characterization of fortilin, a novel antiapoptotic protein. J. Biol. Chem. 276, 47542-47549. https://doi.org/10.1074/jbc.M108954200
- Liu, H., Peng, H. W., Cheng, Y. S., Yuan, H. S. and Yang-Yen, H. F. (2005) Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol. Cell. Biol. 25, 3117-3126. https://doi.org/10.1128/MCB.25.8.3117-3126.2005
- MacDonald, S. M., Rafnar, T., Langdon, J. and Lichtenstein, L. M. (1995) Molecular identification of an IgE-dependent histaminereleasing factor. Science 269, 688-690. https://doi.org/10.1126/science.7542803
- Miao, X., Chen, Y. B., Xu, S. L., Zhao, T., Liu, J. Y., Li, Y. R., Wang, J., Zhang, J. and Guo, G. Z. (2013) TCTP overexpression is associated with the development and progression of glioma. Tumour Biol. 34, 3357-3361. https://doi.org/10.1007/s13277-013-0906-9
- Narita, M., Nunez, S., Heard, E., Narita, M., Lin, A. W., Hearn, S. A., Spector, D. L., Hannon, G. J. and Lowe, S. W. (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell, 113, 703-716. https://doi.org/10.1016/S0092-8674(03)00401-X
- Nielsen, S. J., Schneider, R., Bauer, U. M., Bannister, A. J., Morrison, A., O'Carroll, D., Firestein, R., Cleary, M., Jenuwein, T., Herrera, R. E. and Kouzarides, T. (2001) Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561-565. https://doi.org/10.1038/35087620
- O'Carroll, D., Scherthan, H., Peters, A. H., Opravil, S., Haynes, A. R., Laible, G., Rea, S., Schmid, M., Lebersorger, A., Jerratsch, M., Sattler, L., Mattei, M. G., Denny, P., Brown, S. D., Schweizer, D. and Jenuwein, T. (2000) Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testisspecific expression. Mol. Cell. Biol. 20, 9423-9433. https://doi.org/10.1128/MCB.20.24.9423-9433.2000
- Peters, A. H., O'Carroll, D., Scherthan, H., Mechtler, K., Sauer, S., Schofer, C., Weipoltshammer, K., Pagani, M., Lachner, M., Kohlmaier, A., Opravil, S., Doyle, M., Sibilia, M. and Jenuwein, T. (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323-337. https://doi.org/10.1016/S0092-8674(01)00542-6
- Pickart, C. M. (2001) Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503-533. https://doi.org/10.1146/annurev.biochem.70.1.503
- Rao, V. K., Pal, A. and Taneja, R. (2017) A drive in SUVs: from development to disease. Epigenetics 12, 177-186. https://doi.org/10.1080/15592294.2017.1281502
- Rea, S., Eisenhaber, F., O'Carroll, D., Strahl, B. D., Sun, Z. W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C. P., Allis, C. D. and Jenuwein, T. (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593-599. https://doi.org/10.1038/35020506
- Rho, S. B., Lee, J. H., Park, M. S., Byun, H. J., Kang, S., Seo, S. S., Kim, J. Y. and Park, S. Y. (2011) Anti-apoptotic protein TCTP controls the stability of the tumor suppressor p53. FEBS Lett. 585, 29-35. https://doi.org/10.1016/j.febslet.2010.11.014
- Rho, S. B., Lee, K. H., Kim, J. W., Shiba, K., Jo, Y. J. and Kim, S. (1996) Interaction between human tRNA synthetases involves repeated sequence elements. Proc. Natl. Acad. Sci. U.S.A. 93, 10128-10133. https://doi.org/10.1073/pnas.93.19.10128
- Shuai, W., Wu, J., Chen, S., Liu, R., Ye, Z., Kuang, C., Fu, X., Wang, G., Li, Y., Peng, Q., Shi, W., Li, Y., Zhou, Q. and Huang, W. (2018) SUV39H2 promotes colorectal cancer proliferation and metastasis via tri-methylation of the SLIT1 promoter. Cancer Lett. 422, 56-69. https://doi.org/10.1016/j.canlet.2018.02.023
- Susini, L., Besse, S., Duflaut, D., Lespagnol, A., Beekman, C., Fiucci, G., Atkinson, A. R., Busso, D., Poussin, P., Marine, J. C., Martinou, J. C., Cavarelli, J., Moras, D., Amson, R. and Telerman, A. (2008) TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ. 15, 1211-1220. https://doi.org/10.1038/cdd.2008.18
- Tani, T., Shimada, H., Kato, Y. and Tsunoda, Y. (2007) Bovine oocytes with the potential to reprogram somatic cell nuclei have a unique 23-kDa protein, phosphorylated transcriptionally controlled tumor protein (TCTP). Cloning Stem Cells 9, 267-280. https://doi.org/10.1089/clo.2006.0072
- Telerman, A. and Amson, R. (2009) The molecular programme of tumour reversion: the steps beyond malignant transformation. Nat. Rev. Cancer 9, 206-216. https://doi.org/10.1038/nrc2589
- Thebault, S., Agez, M., Chi, X., Stojko, J., Cura, V., Telerman, S. B., Maillet, L., Gautier, F., Billas-Massobrio, I., Birck, C., Troffer-Charlier, N., Karafin, T., Honore, J., Senff-Ribeiro, A., Montessuit, S., Johnson, C. M., Juin, P., Cianferani, S., Martinou, J. C., Andrews, D. W., Amson, R., Telerman, A. and Cavarelli, J. (2016) TCTP contains a BH3-like domain, which instead of inhibiting, activates BclxL. Sci. Rep. 6, 19725. https://doi.org/10.1038/srep19725
- Tuynder, M., Fiucci, G., Prieur, S., Lespagnol, A., Geant, A., Beaucourt, S., Duflaut, D., Besse, S., Susini, L., Cavarelli, J., Moras, D., Amson, R. and Telerman, A. (2004) Translationally controlled tumor protein is a target of tumor reversion. Proc. Natl. Acad. Sci. U.S.A. 101, 15364-15369. https://doi.org/10.1073/pnas.0406776101
- Tuynder, M., Susini, L., Prieur, S., Besse, S., Fiucci, G., Amson, R. and Telerman, A. (2002) Biological models and genes of tumor reversion: cellular reprogramming through tpt1/TCTP and SIAH-1. Proc. Natl. Acad. Sci. U.S.A. 99, 14976-14981. https://doi.org/10.1073/pnas.222470799
- Vandel, L., Nicolas, E., Vaute, O., Ferreira, R., Ait-Si-Ali, S. and Trouche, D. (2001) Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol. Cell. Biol. 21, 6484-6494. https://doi.org/10.1128/MCB.21.19.6484-6494.2001
- Yarm, F. R. (2002) Plk phosphorylation regulates the microtubule-stabilizing protein TCTP. Mol. Cell. Biol. 22, 6209-6221. https://doi.org/10.1128/MCB.22.17.6209-6221.2002
- Yoon, K. A., Hwangbo, B., Kim, I. J., Park, S., Kim, H. S., Kee, H. J., Lee, J. E., Jang, Y. K., Park, J. G. and Lee, J. S. (2006) Novel polymorphisms in the SUV39H2 histone methyltransferase and the risk of lung cancer. Carcinogenesis 27, 2217-2222. https://doi.org/10.1093/carcin/bgl084
- Zhang, F., Liu, B., Wang, Z., Yu, X. J., Ni, Q. X., Yang, W. T., Mukaida, N. and Li, Y. Y. (2013) A novel regulatory mechanism of Pim-3 kinase stability and its involvement in pancreatic cancer progression. Mol. Cancer Res. 11, 1508-1520. https://doi.org/10.1158/1541-7786.MCR-13-0389
- Zheng, Y., Li, B., Wang, J., Xiong, Y., Wang, K., Qi, Y., Sun, H., Wu, L. and Yang, L. (2018) Identification of SUV39H2 as a potential oncogene in lung adenocarcinoma. Clin. Epigenetics 10, 129. https://doi.org/10.1186/s13148-018-0562-4
Cited by
- Structure, Activity and Function of the Suv39h1 and Suv39h2 Protein Lysine Methyltransferases vol.11, pp.7, 2019, https://doi.org/10.3390/life11070703