Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.021

Suppressor of Variegation 3-9 Homolog 2, a Novel Binding Protein of Translationally Controlled Tumor Protein, Regulates Cancer Cell Proliferation  

Kim, A-Reum (Division of Translational Science, Research Institute, National Cancer Center)
Sung, Jee Young (Division of Clinical Research, Research Institute, National Cancer Center)
Rho, Seung Bae (Division of Translational Science, Research Institute, National Cancer Center)
Kim, Yong-Nyun (Division of Translational Science, Research Institute, National Cancer Center)
Yoon, Kyungsil (Division of Translational Science, Research Institute, National Cancer Center)
Publication Information
Biomolecules & Therapeutics / v.27, no.2, 2019 , pp. 231-239 More about this Journal
Abstract
Suppressor of Variegation 3-9 Homolog 2 (SUV39H2) methylates the lysine 9 residue of histone H3 and induces heterochromatin formation, resulting in transcriptional repression or silencing of target genes. SUV39H1 and SUV39H2 have a role in embryonic development, and SUV39H1 was shown to suppress cell cycle progression associated with Rb. However, the function of human SUV39H2 has not been extensively studied. We observed that forced expression of SUV39H2 decreased cell proliferation by inducing $G_1$ cell cycle arrest. In addition, SUV39H2 was degraded through the ubiquitin-proteasomal pathway. Using yeast two-hybrid screening to address the degradation mechanism and function of SUV39H2, we identified translationally controlled tumor protein (TCTP) as an SUV39H2-interacting molecule. Mapping of the interacting regions indicated that the N-terminal 60 amino acids (aa) of full-length SUV39H2 and the C-terminus of TCTP (120-172 aa) were critical for binding. The interaction of SUV39H2 and TCTP was further confirmed by co-immunoprecipitation and immunofluorescence staining for colocalization. Moreover, depletion of TCTP by RNAi led to up-regulation of SUV39H2 protein, while TCTP overexpression reduced SUV39H2 protein level. The half-life of SUV39H2 protein was significantly extended upon TCTP depletion. These results clearly indicate that TCTP negatively regulates the expression of SUV39H2 post-translationally. Furthermore, SUV39H2 induced apoptotic cell death in TCTP-knockdown cells. Taken together, we identified SUV39H2, as a novel target protein of TCTP and demonstrated that SUV39H2 regulates cell proliferation of lung cancer cells.
Keywords
Histone methyltransferase; SUV39H2; TCTP; Apoptosis; Cell cycle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yarm, F. R. (2002) Plk phosphorylation regulates the microtubule-stabilizing protein TCTP. Mol. Cell. Biol. 22, 6209-6221.   DOI
2 Miao, X., Chen, Y. B., Xu, S. L., Zhao, T., Liu, J. Y., Li, Y. R., Wang, J., Zhang, J. and Guo, G. Z. (2013) TCTP overexpression is associated with the development and progression of glioma. Tumour Biol. 34, 3357-3361.   DOI
3 Narita, M., Nunez, S., Heard, E., Narita, M., Lin, A. W., Hearn, S. A., Spector, D. L., Hannon, G. J. and Lowe, S. W. (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell, 113, 703-716.   DOI
4 Nielsen, S. J., Schneider, R., Bauer, U. M., Bannister, A. J., Morrison, A., O'Carroll, D., Firestein, R., Cleary, M., Jenuwein, T., Herrera, R. E. and Kouzarides, T. (2001) Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561-565.   DOI
5 O'Carroll, D., Scherthan, H., Peters, A. H., Opravil, S., Haynes, A. R., Laible, G., Rea, S., Schmid, M., Lebersorger, A., Jerratsch, M., Sattler, L., Mattei, M. G., Denny, P., Brown, S. D., Schweizer, D. and Jenuwein, T. (2000) Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testisspecific expression. Mol. Cell. Biol. 20, 9423-9433.   DOI
6 Yoon, K. A., Hwangbo, B., Kim, I. J., Park, S., Kim, H. S., Kee, H. J., Lee, J. E., Jang, Y. K., Park, J. G. and Lee, J. S. (2006) Novel polymorphisms in the SUV39H2 histone methyltransferase and the risk of lung cancer. Carcinogenesis 27, 2217-2222.   DOI
7 Zhang, F., Liu, B., Wang, Z., Yu, X. J., Ni, Q. X., Yang, W. T., Mukaida, N. and Li, Y. Y. (2013) A novel regulatory mechanism of Pim-3 kinase stability and its involvement in pancreatic cancer progression. Mol. Cancer Res. 11, 1508-1520.   DOI
8 Zheng, Y., Li, B., Wang, J., Xiong, Y., Wang, K., Qi, Y., Sun, H., Wu, L. and Yang, L. (2018) Identification of SUV39H2 as a potential oncogene in lung adenocarcinoma. Clin. Epigenetics 10, 129.   DOI
9 Pickart, C. M. (2001) Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503-533.   DOI
10 Peters, A. H., O'Carroll, D., Scherthan, H., Mechtler, K., Sauer, S., Schofer, C., Weipoltshammer, K., Pagani, M., Lachner, M., Kohlmaier, A., Opravil, S., Doyle, M., Sibilia, M. and Jenuwein, T. (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323-337.   DOI
11 Rao, V. K., Pal, A. and Taneja, R. (2017) A drive in SUVs: from development to disease. Epigenetics 12, 177-186.   DOI
12 Rea, S., Eisenhaber, F., O'Carroll, D., Strahl, B. D., Sun, Z. W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C. P., Allis, C. D. and Jenuwein, T. (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593-599.   DOI
13 Susini, L., Besse, S., Duflaut, D., Lespagnol, A., Beekman, C., Fiucci, G., Atkinson, A. R., Busso, D., Poussin, P., Marine, J. C., Martinou, J. C., Cavarelli, J., Moras, D., Amson, R. and Telerman, A. (2008) TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ. 15, 1211-1220.   DOI
14 Rho, S. B., Lee, J. H., Park, M. S., Byun, H. J., Kang, S., Seo, S. S., Kim, J. Y. and Park, S. Y. (2011) Anti-apoptotic protein TCTP controls the stability of the tumor suppressor p53. FEBS Lett. 585, 29-35.   DOI
15 Rho, S. B., Lee, K. H., Kim, J. W., Shiba, K., Jo, Y. J. and Kim, S. (1996) Interaction between human tRNA synthetases involves repeated sequence elements. Proc. Natl. Acad. Sci. U.S.A. 93, 10128-10133.   DOI
16 Shuai, W., Wu, J., Chen, S., Liu, R., Ye, Z., Kuang, C., Fu, X., Wang, G., Li, Y., Peng, Q., Shi, W., Li, Y., Zhou, Q. and Huang, W. (2018) SUV39H2 promotes colorectal cancer proliferation and metastasis via tri-methylation of the SLIT1 promoter. Cancer Lett. 422, 56-69.   DOI
17 Albacker, C. E., Storer, N. Y., Langdon, E. M., Dibiase, A., Zhou, Y., Langenau, D. M. and Zon, L. I. (2013) The histone methyltransferase SUV39H1 suppresses embryonal rhabdomyosarcoma formation in zebrafish. PLoS ONE 8, e64969.   DOI
18 Acunzo, J., Baylot, V., So, A. and Rocchi, P. (2014) TCTP as therapeutic target in cancers. Cancer Treat. Rev. 40, 760-769.   DOI
19 Adams, J. (2004) The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5, 417-421.   DOI
20 Ait-Si-Ali, S., Guasconi, V., Fritsch, L., Yahi, H., Sekhri, R., Naguibneva, I., Robin, P., Cabon, F., Polesskaya, A. and Harel-Bellan, A. (2004) A Suv39h-dependent mechanism for silencing S-phase genes in differentiating but not in cycling cells. EMBO J. 23, 605-615.   DOI
21 Amson, R., Pece, S., Lespagnol, A., Vyas, R., Mazzarol, G., Tosoni, D., Colaluca, I., Viale, G., Rodrigues-Ferreira, S., Wynendaele, J., Chaloin, O., Hoebeke, J., Marine, J. C., Di Fiore, P. P. and Telerman, A. (2011) Reciprocal repression between P53 and TCTP. Nat. Med. 18, 91-99.   DOI
22 Amson, R., Pece, S., Marine, J. C., Di Fiore, P. P. and Telerman, A. (2013) TPT1/ TCTP-regulated pathways in phenotypic reprogramming. Trends Cell Biol. 23, 37-46.   DOI
23 Amzallag, N., Passer, B. J., Allanic, D., Segura, E., Thery, C., Goud, B., Amson, R. and Telerman, A. (2004) TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J. Biol. Chem. 279, 46104-46112.   DOI
24 Chen, K., Chen, S., Huang, C., Cheng, H. and Zhou, R. (2013) TCTP increases stability of hypoxia-inducible factor 1alpha by interaction with and degradation of the tumour suppressor VHL. Biol. Cell 105, 208-218.   DOI
25 Bannister, A. J., Zegerman, P., Partridge, J. F., Miska, E. A., Thomas, J. O., Allshire, R. C. and Kouzarides, T. (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120-124.   DOI
26 Bommer, U. A. and Thiele, B. J. (2004) The translationally controlled tumour protein (TCTP). Int. J. Biochem. Cell Biol. 36, 379-385.   DOI
27 Bommer, U. A., Vine, K. L., Puri, P., Engel, M., Belfiore, L., Fildes, K., Batterham, M., Lochhead, A. and Aghmesheh, M. (2017) Translationally controlled tumour protein TCTP is induced early in human colorectal tumours and contributes to the resistance of HCT116 colon cancer cells to 5-FU and oxaliplatin. Cell Commun. Signal. 15, 9.   DOI
28 Burgess, A., Labbe, J. C., Vigneron, S., Bonneaud, N., Strub, J. M., Van Dorsselaer, A., Lorca, T. and Castro, A. (2008) Chfr interacts and colocalizes with TCTP to the mitotic spindle. Oncogene 27, 5554-5566.   DOI
29 Cans, C., Passer, B. J., Shalak, V., Nancy-Portebois, V., Crible, V., Amzallag, N., Allanic, D., Tufino, R., Argentini, M., Moras, D., Fiucci, G., Goud, B., Mirande, M., Amson, R. and Telerman, A. (2003) Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. Proc. Natl. Acad. Sci. U.S.A. 100, 13892-13897.   DOI
30 Chen, S. H., Wu, P. S., Chou, C. H., Yan, Y. T., Liu, H., Weng, S. Y. and Yang-Yen, H. F. (2007) A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol. Biol. Cell 18, 2525-2532.   DOI
31 Chiba, T., Saito, T., Yuki, K., Zen, Y., Koide, S., Kanogawa, N., Motoyama, T., Ogasawara, S., Suzuki, E., Ooka, Y., Tawada, A., Otsuka, M., Miyazaki, M., Iwama, A. and Yokosuka, O. (2015) Histone lysine methyltransferase SUV39H1 is a potent target for epigenetic therapy of hepatocellular carcinoma. Int. J. Cancer 136, 289-298.   DOI
32 Ciechanover, A. (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79, 13-21.   DOI
33 Gnanasekar, M., Thirugnanam, S., Zheng, G., Chen, A. and Ramaswamy, K. (2009) Gene silencing of translationally controlled tumor protein (TCTP) by siRNA inhibits cell growth and induces apoptosis of human prostate cancer cells. Int. J. Oncol. 34, 1241-1246.
34 Deng, S. S., Xing, T. Y., Zhou, H. Y., Xiong, R. H., Lu, Y. G., Wen, B., Liu, S. Q. and Yang, H. J. (2006) Comparative proteome analysis of breast cancer and adjacent normal breast tissues in human. Genomics Proteomics Bioinformatics 4, 165-172.   DOI
35 Fiucci, G., Lespagnol, A., Stumptner-Cuvelette, P., Beaucourt, S., Duflaut, D., Susini, L., Amson, R. and Telerman, A. (2003) Genomic organization and expression of mouse Tpt1 gene. Genomics 81, 570-578.   DOI
36 Gachet, Y., Tournier, S., Lee, M., Lazaris-Karatzas, A., Poulton, T. and Bommer, U. A. (1999) The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J. Cell Sci. 112, 1257-1271.   DOI
37 Kubiak, J. Z., Bazile, F., Pascal, A., Richard-Parpaillon, L., Polanski, Z., Ciemerych, M. A. and Chesnel, F. (2008) Temporal regulation of embryonic M-phases. Folia Histochem. Cytobiol. 46, 5-9.
38 Gyorffy, B., Surowiak, P., Budczies, J. and Lanczky, A. (2013) Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS ONE 8, e82241.   DOI
39 Kang, H. S., Lee, M. J., Song, H., Han, S. H., Kim, Y. M., Im, J. Y. and Choi, I. (2001) Molecular identification of IgE-dependent histaminereleasing factor as a B cell growth factor. J. Immunol. 166, 6545-6554.   DOI
40 Koziol, M. J., Garrett, N. and Gurdon, J. B. (2007) Tpt1 activates transcription of oct4 and nanog in transplanted somatic nuclei. Curr. Biol. 17, 801-807.   DOI
41 Tuynder, M., Fiucci, G., Prieur, S., Lespagnol, A., Geant, A., Beaucourt, S., Duflaut, D., Besse, S., Susini, L., Cavarelli, J., Moras, D., Amson, R. and Telerman, A. (2004) Translationally controlled tumor protein is a target of tumor reversion. Proc. Natl. Acad. Sci. U.S.A. 101, 15364-15369.   DOI
42 Tani, T., Shimada, H., Kato, Y. and Tsunoda, Y. (2007) Bovine oocytes with the potential to reprogram somatic cell nuclei have a unique 23-kDa protein, phosphorylated transcriptionally controlled tumor protein (TCTP). Cloning Stem Cells 9, 267-280.   DOI
43 Telerman, A. and Amson, R. (2009) The molecular programme of tumour reversion: the steps beyond malignant transformation. Nat. Rev. Cancer 9, 206-216.   DOI
44 Thebault, S., Agez, M., Chi, X., Stojko, J., Cura, V., Telerman, S. B., Maillet, L., Gautier, F., Billas-Massobrio, I., Birck, C., Troffer-Charlier, N., Karafin, T., Honore, J., Senff-Ribeiro, A., Montessuit, S., Johnson, C. M., Juin, P., Cianferani, S., Martinou, J. C., Andrews, D. W., Amson, R., Telerman, A. and Cavarelli, J. (2016) TCTP contains a BH3-like domain, which instead of inhibiting, activates BclxL. Sci. Rep. 6, 19725.   DOI
45 Tuynder, M., Susini, L., Prieur, S., Besse, S., Fiucci, G., Amson, R. and Telerman, A. (2002) Biological models and genes of tumor reversion: cellular reprogramming through tpt1/TCTP and SIAH-1. Proc. Natl. Acad. Sci. U.S.A. 99, 14976-14981.   DOI
46 Vandel, L., Nicolas, E., Vaute, O., Ferreira, R., Ait-Si-Ali, S. and Trouche, D. (2001) Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol. Cell. Biol. 21, 6484-6494.   DOI
47 MacDonald, S. M., Rafnar, T., Langdon, J. and Lichtenstein, L. M. (1995) Molecular identification of an IgE-dependent histaminereleasing factor. Science 269, 688-690.   DOI
48 Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. and Jenuwein, T. (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116-120.   DOI
49 Li, F., Zhang, D. and Fujise, K. (2001) Characterization of fortilin, a novel antiapoptotic protein. J. Biol. Chem. 276, 47542-47549.   DOI
50 Liu, H., Peng, H. W., Cheng, Y. S., Yuan, H. S. and Yang-Yen, H. F. (2005) Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol. Cell. Biol. 25, 3117-3126.   DOI