Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.3.189

Brain-expressed X-linked 2 Binds to Kinesin Superfamily Protein 3A  

Kim, Mooseong (Departments of Neurosurgery, Busan Paik Hospital, Inje University)
Jeong, Young Joo (Department of Biochemistry, Inje University College of Medicine, Inje University)
Park, Sung Woo (Department of Convergence Biomedical Science, Inje University College of Medicine, Inje University)
Seo, Mi Kyoung (Paik Institute for Clinical Research, Inje University)
Kim, Sang Jin (Department of Neurology, Busan Paik Hospital, Inje University)
Lee, Won Hee (Departments of Neurosurgery, Busan Paik Hospital, Inje University)
Urm, Sang-Hwa (Department of Preventive Medicine, Inje University College of Medicine, Inje University)
Lee, Jung Goo (Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University)
Seog, Dae-Hyun (Department of Biochemistry, Inje University College of Medicine, Inje University)
Publication Information
Journal of Life Science / v.32, no.3, 2022 , pp. 189-195 More about this Journal
Abstract
Kinesin-2 comprises two subfamilies of the heterotrimeric or homodimeric motors found in mammalian cells. Heterotrimeric kinesin-2 consists of kinesin superfamily proteins (KIFs) 3A and 3B and kinesin-associated protein 3 (KAP3), which is a molecular motor protein that moves along microtubules. It plays diverse roles in cargo transport, including anterograde trafficking in cilia, and interacts with many different cargoes and proteins, but their binding proteins have not yet been fully identified. In this study, the yeast two-hybrid assay was used to identify the proteins that interact with the cargo-binding domain (CBD) of KIF3A, and an interaction between KIF3A and brain expressed X-linked 2 (Bex2) was found. Bex2 bound to the CBD-containing C-terminal tail region of KIF3A but did not interact with the same region of KIF3B or KIF5A (a motor protein of kinesin-1). KIF3A interacted with another isoform, Bex1, but did not interact with Bex3. In addition, glutathione S-transferase (GST) pull-downs showed that KIF3A specifically interacts with GST-Bex1 and GST-Bex2 but not with GST alone. When co-expressed in HEK-293T cells, Bex2 co-localized with KIF3A and co-immunoprecipitated with KIF3A and KIF3B but not KIF5B. In combination, these results suggest that Bex2 is capable of binding to heterotrimeric kinesin-2 and may serve as an adaptor protein that links heterotrimeric kinesin-2 with cargo.
Keywords
Binding protein; brain expressed X-linked 2; cargo binding domain; kinesin; heterotrimeric kinesin-2;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Koo, J. H., Gill, S., Pannell, L. K., Menco, B. P., Margolis, J. W. and Margolis, F. L. 2004. The interaction of Bex and OMP reveals a dimer of OMP with a short half-life. J. Neurochem. 90, 102-116.
2 Han, C., Liu, H., Liu, J., Yin, K., Xie, Y., Shen, X., Wang, Y., Yuanm J., Qiangm B., Liu, Y. J. and Peng, X. 2005. Human Bex2 interacts with LMO2 and regulates the transcriptional activity of a novel DNA-binding complex. Nucleic Acids Res. 33, 6555-6565.   DOI
3 Takeda, S., Yonekawa, Y., Tanaka, Y., Okada, Y., Nonaka, S. and Hirokawa, N. 1999. Left-right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A-/- mice analysis. J. Cell Biol. 145, 825-836.   DOI
4 Craft, J. M., Harris, J. A., Hyman, S., Kner, P. and Lechtreck, K. F. 2015. Tubulin transport by IFT is upregulated during ciliary growth by a ciliumautonomous mechanism. J. Cell Biol. 208, 223-237.   DOI
5 Scholey, J. M. 2013. Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions. Annu. Rev. Cell Dev. Biol. 29, 443-469.   DOI
6 Alvarez, E., Zhou, W., Witta, S. E. and Freed, C. R. 2005. Characterization of the Bex gene family in humans, mice, and rats. Gene 357, 18-28.   DOI
7 Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. 1998. Current Protocols in Molecular Biology, pp13.6.1-13.6.5, John Wiley & Sons, NY, USA.
8 Davenport, J. R., Watts, A. J., Roper, V. C., Croyle, M. J., van Groen, T., Wyss, J. M., Nagy, T. R., Kesterson, R. A. and Yoder, B. K. 2007. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr. Biol. 17, 1586-1594.   DOI
9 Yamazaki, H., Nakata, T., Okada, Y. and Hirokawa, N. 1995. KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport. J. Cell Biol. 130, 1387-1399.   DOI
10 Takeda, S., Yamazaki, H., Seog, D. H., Kanai, Y., Terada, S. and Hirokawa, N. 2000. Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building. J. Cell Biol. 148, 1255-1265.   DOI
11 Kazi, J. U., Kabir, N. N. and Ronnstrand, L. 2015. BrainExpressed X-linked (BEX) proteins in human cancers. Biochim. Biophys. Acta. 1856, 226-233.
12 Nakajima, K., Yin, X., Takei, Y., Seog, D. H., Homma, N. and Hirokawa, N. 2012. Molecular motor KIF5A is essential for GABA(A) receptor transport, and KIF5A deletion causes epilepsy. Neuron 76, 945-961.   DOI
13 Yamazaki, H., Nakata, T., Okada, Y. and Hirokawa, N. 1996. Cloning and characterization of KAP3: a novel kinesin superfamily-associated protein of KIF3A/3B. Proc. Natl. Acad. Sci. USA. 93, 8443-8448.   DOI
14 Nishimura, T., Kato, K., Yamaguchi, T., Fukata, Y., Ohno, S. and Kaibuchi, K. 2004. Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity. Nat. Cell Biol. 6, 328-334.   DOI
15 Hirokawa, N., Tanaka, Y. and Okada, Y. 2012. Cilia, KIF3 molecular motor and nodal flow. Curr. Opin. Cell Biol. 24, 31-39.   DOI
16 Gaudin, R., de Alencar, B. C., Jouve, M., Berre, S., Le Bouder, E., Schindler, M., Varthaman, A., Gobert, F. X. and Benaroch, P. 2012. Critical role for the kinesin KIF3A in the HIV life cycle in primary human macrophages. J. Cell Biol. 199, 467-479.   DOI
17 Hirokawa, N., Noda, Y., Tanaka, Y. and Niwa, S. 2009. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682-696.   DOI
18 Ichinose, S., Ogawa, T. and Hirokawa, N. 2015. Mechanism of activity-dependent cargo loading via the phosphorylation of KIF3A by PKA and CaMKIIa. Neuron 87, 1022-1035.   DOI
19 Koo, J. H., Saraswati, M. and Margolis, F. L. 2005. Immunolocalization of Bex protein in the mouse brain and olfactory system. J. Comp. Neurol. 487, 1-14.   DOI