Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.3.369

The Carboxyl-terminal Tail of a Heterotrimeric Kinesin 2 Motor Subunit Directly Binds to β2-tubulin  

Jeong, Young Joo (Departments of Biochemistry, Inje University College of Medicine)
Park, Sung Woo (Departments of Convergence Biochmedical Science, Inje University College of Medicine)
Kim, Sang-Jin (Departments of Neurology, Inje University College of Medicine)
Lee, Won Hee (Department of Neurosurgery, Inje University College of Medicine)
Kim, Mooseong (Department of Neurosurgery, Inje University College of Medicine)
Urm, Sang-Hwa (Department of Preventive Medicine, Inje University College of Medicine)
Seog, Dae-Hyun (Departments of Biochemistry, Inje University College of Medicine)
Publication Information
Journal of Life Science / v.29, no.3, 2019 , pp. 369-375 More about this Journal
Abstract
Microtubules form through the polymerization of ${\alpha}-$ and ${\beta}-tubulin$, and tubulin transport plays an important role in defining the rate of microtubule growth inside cellular appendages, such as the cilia and flagella. Heterotrimeric kinesin 2 is a molecular motor member of the kinesin superfamily (KIF) that moves along the microtubules to transport multiple cargoes. It consists of two motor subunits (KIF3A and KIF3B) and a kinesin-associated protein 3 (KAP3), forming a heterotrimeric complex. Heterotrimeric kinesin 2 interacts with many different binding proteins through the cargo-binding domains of the KIF3s, but these binding proteins have not yet been specified. To identify these proteins for KIF3A, we performed yeast two-hybrid (Y2H) screening and found a specific interaction with ${\beta}2-tubulin$ (Tubb2), a microtubule component. Tubb2 was found to bind to the cargo-binding domain of KIF3A but did not interact with KIF3B, KIF5B, or kinesin light chain 1 in the Y2H assay. The carboxyl-terminal region of Tubb2 is essential for interaction with KIF3A. Other Tubb isoforms, including Tubb1, Tubb3, Tubb4, and Tubb5, also interacted with KIF3A in the Y2H screening. However, ${\alpha}1-tubulin$ (Tuba1) did not interact with KIF3A. In addition, an antibody to KIF3A specifically co-immunoprecipitated the KIF3B and KAP3 associated with Tubb2 from mouse brain extracts. In combination, these results suggest that a heterotrimeric kinesin 2 motor protein is capable of binding to tubulin and may transport it in cells.
Keywords
Binding protein; kinesin; microtubule; transport; tubulin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lin, F., Hiesberger, T., Cordes, K., Sinclair, A. M., Goldstein, L. S., Somlo, S. and Igarashi, P. 2003. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc. Natl. Acad. Sci. USA 100, 5286-5291.   DOI
2 Nishimura, T., Kato, K., Yamaguchi, T., Fukata, Y., Ohno, S. and Kaibuchi, K. 2004. Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity. Nat. Cell Biol. 6, 328-334.   DOI
3 Ou, G., Koga, M., Blacque, O. E., Murayama, T., Ohshima, Y., Schafer, J. C., Li, C., Yoder, B. K., Leroux, M. R. and Scholey, J. M. 2007. Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles. Mol. Biol. Cell 18, 1554-1569.   DOI
4 Pazour, G. J., Dickert, B. L., Vucica, Y., Seeley, E. S., Rosenbaum, J. L., Witman, G. B. and Cole, D. G. 2000. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J. Cell Biol. 151, 709-718.   DOI
5 Romaniello, R., Arrigoni, F., Bassi, M. T. and Borgatti, R. 2015. Mutations in ${\alpha}$- and ${\beta}$-tubulin encoding genes: implications in brain malformations. Brain Dev. 37, 273-280.   DOI
6 Scholey, J. M. 2013. Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions. Annu. Rev. Cell Dev. Biol. 29, 443-469.   DOI
7 Zhao, C., Omori, Y., Brodowska, K., Kovach, P. and Malicki, J. 2012. Kinesin-2 family in vertebrate ciliogenesis. Proc. Natl. Acad. Sci. USA. 109, 2388-2393.   DOI
8 Snow, J. J., Ou, G., Gunnarson, A. L., Walker, M. R., Zhou, H. M., Brust-Mascher, I. and Scholey, J. M. 2004. Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat. Cell Biol. 6, 1109-1113.   DOI
9 Takeda, S., Yamazaki, H., Seog, D. H., Kanai, Y., Terada, S. and Hirokawa, N. 2000. Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building. J. Cell Biol. 148, 1255-1265.   DOI
10 Yamazaki, H., Nakata, T., Okada, Y. and Hirokawa, N. 1996. Cloning and characterization of KAP3: a novel kinesin superfamily-associated protein of KIF3A/3B. Proc. Natl. Acad. Sci. USA. 93, 8443-8448.   DOI
11 Craft, J. M., Harris, J. A., Hyman, S., Kner, P. and Lechtreck, K. F. 2015. Tubulin transport by IFT is upregulated during ciliary growth by a ciliumautonomous mechanism. J. Cell Biol. 208, 223-237.   DOI
12 Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. 1998. Current Protocols in Molecular Biology, pp13.6.1-13.6.5, John Wiley & Sons, NY, USA.
13 Bhogaraju, S., Cajanek, L., Fort, C., Blisnick, T., Weber, K., Taschner, M., Mizuno, N., Lamla, S., Bastin, P., Nigg, E. A. and Lorentzen, E. 2013. Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science 341, 1009-1012.   DOI
14 Chakraborti, S., Natarajan, K., Curiel, J., Janke, C. and Liu, J. 2016. The emerging role of the tubulin code: From the tubulin molecule to neuronal function and disease. Cytoskeleton 73, 521-550.   DOI
15 Ichinose, S., Ogawa, T. and Hirokawa, N. 2015. Mechanism of activity-dependent cargo loading via the phosphorylation of KIF3A by PKA and CaMKIIa. Neuron 87, 1022-1035.   DOI
16 Davenport, J. R., Watts, A. J., Roper, V. C., Croyle, M. J., van Groen, T., Wyss, J. M., Nagy, T. R., Kesterson, R. A. and Yoder, B. K. 2007. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr. Biol. 17, 1586-1594.   DOI
17 Hao, L., Thein, M., Brust-Mascher, I., Civelekoglu-Scholey, G., Lu, Y., Acar, S., Prevo, B., Shaham, S. and Scholey, J. M. 2011. Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments. Nat. Cell Biol. 13, 790-798.   DOI
18 Hirokawa, N., Noda, Y., Tanaka, Y. and Niwa, S. 2009. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682-696.   DOI
19 Hirokawa, N. and Tanaka, Y. 2015. Kinesin superfamily proteins (KIFs): Various functions and their relevance for important phenomena in life and diseases. Exp. Cell Res. 334, 16-25.   DOI
20 Hirokawa, N., Tanaka, Y. and Okada, Y. 2012. Cilia, KIF3 molecular motor and nodal flow. Curr. Opin. Cell Biol. 24, 31-39.   DOI
21 Jana, S. C., Girotra, M. and Ray, K. 2011. Heterotrimeric kinesin-II is necessary and sufficient to promote different stepwise assembly of morphologically distinct bipartite cilia in Drosophila antenna. Mol. Biol. Cell 22, 769-781.   DOI
22 Kimura, T., Watanabe, H., Iwamatsu, A. and Kaibuchi, K. 2005. Tubulin and CRMP2 complex is transported via kinesin-1. J. Neurochem. 93, 1371-1382.   DOI