• Title/Summary/Keyword: Y-Connection

Search Result 9,331, Processing Time 0.032 seconds

SUBMANIFOLDS OF AN ALMOST r-PARACONTACT RIEMANNIAN MANIFOLD ENDOWED WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Ahmad, Mobin;Jun, Jae-Bok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.653-665
    • /
    • 2009
  • We define a semi-symmetric non-metric connection in an almost r-paracontact Riemannian manifold and we consider submanifolds of an almost r-paracontact Riemannian manifold endowed with a semi-symmetric non-metric connection and obtain Gauss and Codazzi equations, Weingarten equation and curvature tensor for submanifolds of an almost r-paracontact Riemannian manifold endowed with a semi-symmetric non-metric connection.

  • PDF

LICHNEROWICZ CONNECTIONS IN ALMOST COMPLEX FINSLER MANIFOLDS

  • LEE, NANY;WON, DAE-YEON
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.405-413
    • /
    • 2005
  • We consider the connections $\nabla$ on the Rizza manifold (M, J, L) satisfying ${\nabla}G=0\;and\;{\nabla}J=0$. Among them, we derive a Lichnerowicz connection from the Cart an connection and characterize it in terms of torsion. Generalizing Kahler condition in Hermitian geometry, we define a Kahler condition for Rizza manifolds. For such manifolds, we show that the Cartan connection and the Lichnerowicz connection coincide and that the almost complex structure J is integrable.

GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD WITH A NON-METRIC 𝜙-SYMMETRIC CONNECTION

  • Jin, Dae Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.1047-1065
    • /
    • 2017
  • The notion of a non-metric ${\phi}$-symmetric connection on semi-Riemannian manifolds was introduced by Jin [6, 7]. The object of study in this paper is generic lightlike submanifolds of an indefinite Kaehler manifold ${\bar{M}}$ with a non-metric ${\phi}$-symmetric connection. First, we provide several new results for such generic lightlike submanifolds. Next, we investigate generic lightlike submanifolds of an indefinite complex space form ${\bar{M}}(c)$ with a non-metric ${\phi}$-symmetric connection.

EINSTEIN'S CONNECTION IN 3-DIMENSIONAL ES-MANIFOLD

  • HWANG, IN HO
    • Korean Journal of Mathematics
    • /
    • v.23 no.2
    • /
    • pp.313-321
    • /
    • 2015
  • The manifold $^*g-ESX_n$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor $^*g^{{\lambda}{\nu}}$ through the ES-connection which is both Einstein and semi-symmetric. The purpose of the present paper is to prove a necessary and sufficient condition for a unique Einstein's connection to exist in 3-dimensional $^*g-ESX_3$ and to display a surveyable tnesorial representation of 3-dimensional Einstein's connection in terms of the unified field tensor, employing the powerful recurrence relations in the first class.

ALMOST α-COSYMPLECTIC f-MANIFOLDS ENDOWED WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Beyendi, Selahattin;Aktan, Nesip;Sivridag, Ali Ihsan
    • Honam Mathematical Journal
    • /
    • v.42 no.1
    • /
    • pp.175-185
    • /
    • 2020
  • In this paper, we introduce almost α-Cosymplectic f-manifolds endowed with a semi-symmetric non-metric connection and give some general results concerning the curvature of such connection. In particular, we study some curvature properties of an almost α-cosymplectic f-manifold equipped with semi-symmetric non-metric connection.

LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Shin, Jong Moon
    • East Asian mathematical journal
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2015
  • We study the geometry of r-lightlike submanifolds M of a semi-Riemannian manifold $\bar{M}$ with a semi-symmetric non-metric connection subject to the conditions; (a) the screen distribution of M is totally geodesic in M, and (b) at least one among the r-th lightlike second fundamental forms is parallel with respect to the induced connection of M. The main result is a classification theorem for irrotational r-lightlike submanifold of a semi-Riemannian manifold of index r admitting a semi-symmetric non-metric connection.

TRANS-SASAKIAN MANIFOLDS WITH RESPECT TO GENERALIZED TANAKA-WEBSTER CONNECTION

  • Kazan, Ahmet;Karadag, H.Bayram
    • Honam Mathematical Journal
    • /
    • v.40 no.3
    • /
    • pp.487-508
    • /
    • 2018
  • In this study, we use the generalized Tanaka-Webster connection on a trans-Sasakian manifold of type (${\alpha},{\beta}$) and obtain the curvature tensors of a trans-Sasakian manifold with respect to this connection. Also, we investigate some special curvature conditions of a trans-Sasakian manifold with respect to generalized Tanaka-Webster connection and finally, give an example for trans-Sasakian manifolds.

ON SEMI-INVARIANT SUBMANIFOLDS OF A NEARLY KENMOTSU MANIFOLD WITH A QUARTER SYMMETRIC NON-METRIC CONNECTION

  • Ahmad, Mobin;Jun, Jae-Bok
    • The Pure and Applied Mathematics
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • We define a quarter symmetric non-metric connection in a nearly Ken-motsu manifold and we study semi-invariant submanifolds of a nearly Kenmotsu manifold endowed with a quarter symmetric non-metric connection. Moreover, we discuss the integrability of the distributions on semi-invariant submanifolds of a nearly Kenmotsu manifold with a quarter symmetric non-metric connection.