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SUBMANIFOLDS OF AN ALMOST r-PARACONTACT
RIEMANNIAN MANIFOLD ENDOWED WITH A
SEMI-SYMMETRIC NON-METRIC CONNECTION

Mobin Ahmad* and Jae-Bok Jun**

Abstract. We define a semi-symmetric non-metric connection in
an almost r-paracontact Riemannian manifold and we consider sub-
manifolds of an almost r-paracontact Riemannian manifold endowed
with a semi-symmetric non-metric connection and obtain Gauss and
Codazzi equations, Weingarten equation and curvature tensor for
submanifolds of an almost r-paracontact Riemannian manifold en-
dowed with a semi-symmetric non-metric connection.

1. Introduction

In [10], R. S. Mishra studied almost complex and almost contact
submanifolds. In [11], R. Nivas considered submanifols of a Riemann-
ian manifold with semi-symmetric connection. Some properties of sub-
manifolds of a Riemannian manifold with semi-symmetric semi-metric
connection were studied in [4] by B. Barua. Moreover, In [9], I. Mi-
hai and K. Motsumoto studied submanifolds of an almost r-paracontact
Riemannian manifold of P -Sasakian type.

Let ∇ be a linear connection in an n-dimensional differentiable mani-
fold M . The torsion tensor T and the curvature tensor R of ∇ are given
respectively by

T (X, Y ) = ∇XY −∇Y X − [X,Y ],

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.
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The connection∇ is symmetric if its torsion tensor T vanishes, otherwise
it is non-symmeteic. The connection∇ is metric if there is a Riemannian
metric g in M is such that ∇g = 0, otherwise it is non-metric. It is well
known that a linear connection is symmetric and metric if it is the Levi-
Civita connection.

In [6], A. Friedmann and J. A. Schouten introduced the idea of a
semi-symmetric linear connection in a differentiable manifold. A linear
connection is said to be semi-symmetric if its torsion tensor T is of the
form

T (X,Y ) = u(Y )X − u(X)Y,

where u is a 1-form. In [1], [2], [3], [7], [8] and [12], some kinds of semi-
symmetric connections were studied.

Let M be an n-dimensional Riemannian manifold with a positive
definite metric g. If there exist a tensor field φ of type (1,1), r vector
fields ξ1, ξ2, ..., ξr (n > r), r 1-forms η1, η2, ..., ηr such that

ηα(ξβ) = δα
β , α, β ∈ (r) = {1, 2, . . .r} (i)

φ2(X) = X − ηα(X)ξα (ii)

ηα(X) = g(X, ξα), α ∈ (r) (iii)

g(φX, φY ) = g(X, Y )−
∑
α

ηα(X)ηα(Y ), (iv)

where X and Y are vector fields on M , then the structure (φ, ξα, ηα, g)α∈(r)

is said to be an almost r-paracontact Riemannian structure and M is an
almost r-paracontact Riemannian manifold [2].
From (i) through (iv), we have

φ(ξα) = 0, α ∈ (r) (v)

ηα ◦ φ = 0, α ∈ (r) (vi)

Ψ(X, Y ) def= g(φX, Y ) = g(X, φY ). (vii)
An almost r-paracontact Riemannian manifold M with structure (φ, ξα,
ηα, g)α∈(r) is said to be S-paracontact manifold if

Ψ(X, Y ) = (
.
∇Y ηα)(X), for all α ∈ (r).

An almost r-paracontact Riemannian manifold M with structure (φ, ξα,
ηα, g)α∈(r) is said to be P -Sasakian manifold if it also satisfies

.
∇ZΨ(X,Y ) = −

∑
α

ηα(X)[g(Y, Z)−
∑

β

ηβ(Y )ηβ(Z)]
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−
∑
α

ηα(Y )[g(X,Z)−
∑

β

ηβ(X)ηβ(Z)]

for all vector fields X, Y and Z on M [9].
The above two conditions are respectively equivalent to

φX = ∇̇Xξα, for all α ∈ (r) and

∇̇Y φ(X) = −
∑
α

ηα(X)[Y−ηα(Y )ξα]−[g(X, Y )−
∑
α

ηα(X)ηα(Y )]
∑

β

ξβ.

In this paper, we study semi-symmetric non-metric connection in
an almost r-paracontact Riemannian manifold. We consider hypesur-
faces and submanifolds of almost r-paracontact Riemannian manifold
endowed with a semi-symmetric non-metric connection. We also obtain
Gauss and Codazzi equations for hypersurfaces and curvature tensor and
Weingarten equation for submanifolds of almost r-paracontact Riemann-
ian manifold with respect to semi-symmetric non-metric connection.

2. Preliminaries

Let Mn+1 be an (n+1)-dimensional differentiable almost r-paracontact
Riemannian manifold of class C∞ and Mn be the hypersurface in Mn+1

by the immersion τ : Mn → Mn+1. The differential dτ of the immer-
sion τ is denoted by B. The vector field X in the tangent space of Mn

corresponds to a vector field BX in that of Mn+1. Suppose that g̃ be
the metric in the enveloping manifold Mn+1 and g the induced metric
of hypersurface Mn defined by

g(φX, Y ) = g̃(BφX, BY ),

where X and Y are the arbitrary vector fields and φ is a tensor of
type (1,1). If the Riemannian manifolds Mn+1 and Mn are both ori-
entable, we can choose a unique vector field N defined along Mn such
that g̃(BX, N) = 0 and g̃(N,N) = 1 for arbitrary vector field N in Mn.
We call this vector field the normal vector field to the hypersurface Mn.

We now define a semi-symmetric non-metric connection ∇̃ by [2]

∇̃X̃ Ỹ = ˜̇∇X̃ Ỹ + η̃α(Ỹ )X̃ (2.1)

for arbitrary vector fields X̃ and Ỹ tangents to Mn+1, where ∇̃ denotes
the Levi-Civita connection with respect to Riemannian metric g̃, η̃α is
a 1-form, and ξ̃α is the vector field defined by

g̃(ξ̃α, X̃) = η̃α(X̃)
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for arbitrary vector fields X̃ on Mn+1. Also

g̃(φ̃X̃, Ỹ ) = g̃(X̃, φ̃Ỹ ),

where φ̃ is a (1,1)-tensor field.

Now, suppose that (φ̃, ξ̃α, η̃α, g̃)α∈(r) is an almost r-paracontact Rie-
mannian structure on Mn+1. Then every vector field X̃ on Mn+1 is
decomposed as

X̃ = BX + `(X̃)N,

where ` is a 1-form on Mn+1 and for any vector field X on Mn and
normal N . Also we have b(BX) = b(X), φ(BX) = Bφ(X), where b is a
1-form on Mn.

For each α ∈ (r), we have [2]

φ̃BX = BφX + b(X)N, (2.2)

ξ̃α = Bξα + aαN, (2.3)

where ξα is a vector field and aα is defined as

aα = m(ξα) = ηα(N) (2.4)

for each α ∈ (r) on Mn. Now we defined η̃α as

η̃α(BX) = ηα(X). (2.5)

Then we can know the following.

Theorem 2.1. The connection induced on the hypersurface Mn of an
almost r-paracontact Riemannian manifold Mn+1 with a semi-symmetric
non-metric connection with respect to the unit normal is also a semi-
symmetric non-metric connection.

Proof. Let ∇̇ be the induced connection from ˜̇∇ on the hypersurface
Mn with respect to the unit normal N . Then we have

˜̇∇BXBY = B∇̇XY + h(X, Y )N (2.6)

for arbitrary vector fields X and Y of Mn, where h is a second funda-
mental tensor of the hypersurface Mn. Let ∇ be connection induced on
the hypersurface from ∇̃ with respect to the normal N . Then we have

∇̃BXBY = B∇XY + m(X,Y )N (2.7)
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for arbitrary vector fields X and Y of Mn, where m being a tensor field
of type (0,2) on the hypersurface of Mn.
From equation (2.1), we have

∇̃BXBY = ˜̇∇BXBY + η̃α(BY )φ̃BX.

Using (2.5), (2.6) and (2.7) in the above equation, we get

B(∇XY ) + m(X, Y )N = B∇̇XY + h(X,Y )N + ηα(Y )BX. (2.8)

Comparison of tangential and normal vector fields yields,

∇XY = ∇̇XY + ηα(Y )X (2.9)

and
m(X, Y ) = h(X,Y ). (2.10)

Thus
∇XY −∇Y X − [X,Y ] = ηα(Y )X − ηα(X)Y. (2.11)

Hence the connection ∇ induced on Mn is a semi-symmetric non-metric
connection [7].

3. Totally geodesic and totally umbilical hypersurfaces

We define ∇̇B and ∇B respectively by

(∇̇B)(X, Y ) = (∇̇XB)(Y ) = ˜̇∇BXBY −B(∇̇XY )

and
(∇B)(X,Y ) = (∇XB)(Y ) = (∇̃BXBY )−B(∇XY ),

where X and Y being arbitrary vector fields on Mn. Then equations
(2.6) and (2.7) take the form

(∇̇XB)(Y ) = h(X,Y )N

and
(∇XB)(Y ) = m(X, Y )N.

These are Gauss equations with respect to induced connection ∇̇ and ∇
respectively.

Let X1, X2, ...., Xn be n-orthonormal vector fields, then the func-
tion

1
n

n∑

i=1

h(Xi, Xi)
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is called the mean curvature of Mn with respect to Riemannian connec-
tion ∇̇ and

1
n

n∑

i=1

m(Xi, Xi)

is called the mean curvature of Mn with respect to the semi-symmetric
non-metric connection ∇.
From these we define the followings.

Definition 3.1. The hypersurface Mn is called totally geodesic hy-
persurface of Mn+1 with respect to the Riemannian connection ∇̇ if h
vanishes.

Definition 3.2. The hypersurface Mn is called totally umbilical with
respect to connection ∇̇ if h is proportional to the metric tensor g.

We call Mn is totally geodesic and totally umbilical with respect
to semi-symmetric non-metric connection ∇ according as the function
m vanishes and proportional to the metric g respectively.
Then we have following theorems.

Theorem 3.3. The mean curvature of the hypersurface Mn of an
almost r-paracontact Riemannian manifold Mn+1 with respect to the
Riemannian connection ∇̇ coincides with that of Mn with respect to
semi-symmetric non-metric connection ∇.

Proof. In view of (2.10) we have

m(Xi, Xi) = h(Xi, Xi).

Summing up for i = 1, 2, ...., n and dividing by n, we obtain

1
n

n∑

i=1

m(Xi, Xi) =
1
n

n∑

i=1

h(Xi, Xi),

which proves the theorem.

Theorem 3.4. The hypersurface Mn of an almost r-paracontact Rie-
mannian manifold Mn+1 is totally geodesic with respect to the Riemann-
ian connection ∇̇ if and only if it is totally geodesic with respect to the
semi-symmetric non-metric connection.

Proof. The proof follows from (2.10) easily.
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4. Gauss, Weingarten and Codazzi equations

In this section we shall obtain Weingarten equation with respect to
the semi-symmetric non-metric connection ∇. For the Riemannian con-
nection ∇̇, these equations are given by

˜̇∇BXN = −BHX (4.1)

for any vector field X in Mn, where h is a tensor field of type (1,1) of
Mn defined by

g(HX,Y ) = h(X, Y ). (4.2)
From equations (2.1), (2.2) and (2.4) we have

∇̃BX̃N = ˜̇∇BX̃N + aαBX. (4.3)

Using (4.1) we have
∇̃BX̃N = −BMX, (4.4)

where MX = (H − aα)X for any vector field X in Mn. Equation (4.4)
is the Weingarten equation.

We shall find equation of Gauss and Codazzi with respect the semi-
symmetric non-metric connection. The curvature tensor with respect to
semi-symmetric non-metric connection ∇̃ of Mn+1 is

R̃(X̃, Ỹ )Z̃ = ∇̃X̃∇̃Ỹ Z̃ − ∇̃Ỹ ∇̃X̃Z̃ − ∇̃[X̃,Ỹ ]Z̃. (4.5)

Putting X̃ = BX, Ỹ = BY and Z̃ = BZ, we have

R̃(BX,BY )BZ = ∇̃BX∇̃BY BZ − ∇̃BY ∇̃BXBZ − ∇̃[BX,BY ]BZ.

By virtue of (2.7), (2.11) and (4.4), we get

R̃(BX, BY )BZ = B{R(X, Y )Z + m(X, Z)MY −m(Y, Z)MX} (4.6)

+{(∇Xm)(Y, Z)− (∇Y m)(X, Z)}
+{m(ηα(Y )X − ηα(X)Y ), Z}N,

where
R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

is the curvature tensor of the semi-symmetric non-metric connection ∇.
We denote

R̃(X̃, Ỹ , Z̃, Ũ) = g(R̃(X̃, Ỹ )Z̃, Ũ)
and

R(X, Y, Z, U) = g(R(X, Y )Z, U).
Then from (4.6), we can easily show that

R̃(BX, BY, BZ, BU) = R(X, Y, Z, U) + m(X, Z)m(Y, U)
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−m(Y,Z)m(X,U) + aαg(X, U)m(Y, Z)− aαg(Y, U)m(X, Z) (4.7)
and

R̃(BX, BY,BZ,N) = (∇Xm)(Y, Z)− (∇Y m)(X, Z) (4.8)
+ηα(Y )m(X,Z)− ηα(X)m(Y, Z).

Equation (4.7) and (4.8) are the equation of Gauss and Codazzi with
respect to the semi-symmetric non-metric connection respectively.

5. Submanifolds of codimension 2

Let Mn+1 be an (n+1)-dimensional differentiable almost r-paracontact
Riemannian manifold of differentiability class C∞ and Mn−1 be an
(n − 1)-dimensional submanifold immersed in Mn+1 by immersion τ :
Mn−1 → Mn+1. We denote the differential dτ of the immersion τ by
B, so that the vector field X in the tangent space of Mn−1 corresponds
to a vector field BX in that of Mn+1. Suppose that g̃ be the metric in
the enveloping manifold Mn+1 and g the induced metric of submanifold
Mn−1 defined by

g̃(BφX, BY ) = g(φX, Y )
for any arbitrary vector fields X and Y in Mn−1 [11]. Let the manifolds
Mn+1 and Mn−1 are both orientable such that

g̃(BφX, N1) = g̃(BφX, N2) = g̃(N1, N2) = 0

and
g̃(N1, N1) = g̃(N2, N2) = 1

for arbitrary vector field X in Mn−1 and two unit normals N1 and N2

to Mn−1 [6]. We suppose that the enveloping manifold Mn+1 admits a
semi-symmetric non-metric connection ∇ given by [1]

∇̃X̃ Ỹ = ˜̇∇X̃ Ỹ + η̃α(Ỹ )X̃

for arbitrary vector fields X̃ and Ỹ in Mn−1, ˜̇∇ denotes the Riemannian
connection with respect to the Riemannian metric g̃ and η̃α is a 1-form.
Let us now put

φ̃BX = BφX + a(X)N1 + b(X)N2 (5.1)

ξ̃α = Bξα + aαN1 + bαN2, (5.2)
where a(X) and b(X) are 1-forms on Mn−1, ξα is a vector field in the
tangent space on Mn−1, and aα, bα are functions on Mn−1 defined by

ηα(N1) = aα, ηα(N2) = bα. (5.3)
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Then we can prove the following.

Theorem 5.1. The connection induced on the submanifold Mn−1 of
an almost r-paracontact Riemannian manifold Mn+1 with semi-symmetric
non-metric connection ∇ is also a semi-symmetric non-metric connec-
tion.

Proof. Let ∇̇ be the connection induced on the submanifolds Mn−1

from the connection ˜̇∇ on the enveloping manifold with respect to unit
normals N1 and N2, then we have [9]

˜̇∇BXBY = B(∇̇XY ) + h(X, Y )N1 + k(X, Y )N2 (5.4)

for arbitrary vector fields X and Y of Mn−1, where h and k are second
fundamental tensors of Mn−1. Similarly, if ∇ is the connection induced
on Mn−1 from the semi-symmetric non-metric connection ∇̃ on Mn−1,
we have

∇̃BXBY = B(∇XY ) + m(X, Y )N1 + n(X, Y )N2, (5.5)

where m and n being tensor fields of type (0,2) of the submanifold Mn−1.
In view of equation (2.1), we have

∇̃BXBY = ˜̇∇BXBY + η̃α(BY )(BX).

In view of equations (5.1), (5.2), (5.4) and (5.5), we have

B(∇XY )+m(X, Y )N1+n(X,Y )N2 = B(∇̇XY )+h(X,Y )N1+k(X, Y )N2

(5.6)
+ηα(Y )BX,

where η̃α(BY ) = η̃α(Y ) and g(BX, BY ) = g(X, Y ).
Comparing tangential and normal vector fields to Mn−1, we get

∇XY = ∇̇XY + ηα(Y )X, (5.7)

m(X, Y ) = h(X, Y ) (5.8)a

and
n(X,Y ) = k(X, Y ). (5.8)b

Thus
∇XY −∇Y X − [X,Y ] = ηα(Y )X − ηα(X)Y. (5.9)

Hence the connection ∇ induced on Mn−1 is semi-symmetric non-metric
connection.
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6. Totally geodesic and totally umbilical submanifolds

Let X1, X2, ...., Xn be (n− 1)-orthonormal vector fields on the sub-
manifold Mn−1. Then the function

1
2(n− 1)

n−1∑

i=1

{h(Xi, Xi) + k(Xi, Xi)}

is the mean curvature of Mn−1 with respect to the Riemannian connec-
tion ∇̇ and

1
2(n− 1)

n−1∑

i=1

{m(Xi, Xi) + n(Xi, Xi)}

is the mean curvature of Mn−1 with respect to ∇ [6].
Now we define the followings.

Definition 6.1. If h and k vanish separately, the submanifold Mn−1

is called totally geodesic with respect to the Riemannian connection ∇̇.

Definition 6.2. The submanifold Mn−1 is called totally umbilical
with respect to the Riemannian connection ∇̇ if h and k are proportional
to the metric g.

We call Mn−1 is totally geodesic and totally umbilical with respect
to the semi-symmetric non-metric connection ∇ according as the func-
tions m and n vanish separately and are proportional to metric tensor
g respectively.
Then we can prove the following.

Theorem 6.3. The mean curvature of submanifold Mn−1 of an al-
most r-paracontact Riemannian manifold Mn+1 with respect to the Rie-
mannian connection ∇̇ coincides with that of Mn−1 with respect to the
semi-symmetric non-metric connection ∇.

Proof. In view of (5.8) we have

m(Xi, Xi) + n(Xi, Xi) = h(Xi, Xi) + k(Xi, Xi).

Summing up for i = 1, 2, ..., n− 1 and dividing by 2(n− 1), we get

1
2(n− 1)

n−1∑

i=1

{m(Xi, Xi)+n(Xi, Xi)} =
1

2(n− 1)

n−1∑

i=1

{h(Xi, Xi)+k(Xi, Xi)},

which proves our assertion.
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Theorem 6.4. The submanifold Mn−1 of an almost r-paracontact
Riemannian manifold Mn+1 is totally geodesic with respect to the Rie-
mannian connection ∇̇ if and only if it is totally geodesic with respect
to the semi-symmetric non-metric connection ∇.

Proof. The proof follows easily from equations (5.8)a and (5.8)b.

7. Curvature tensor and Weingarten equations

For Riemannian connection ∇̇, the Weingarten equations are given
by [9]

∇̇BXN1 = −BHX + l(X)N2 (7.1)
and

∇̇BXN2 = −BKX − l(X)N1,

where H and K are tensor fields of type (1,1) such that

g(HX, Y ) = h(X, Y ) (7.2)

and
g(KX, Y ) = k(X, Y )

and also l is a tensor fields of type (1, 1). Furthermore making use of
(2.1) and (7.1), we get

∇̃BXN1 = −B(H − aα)X + l(X)N2,

∇̃BXN1 = −BM1X + l(X)N2, (7.3)

where M1 ≡ H − aα. Similarly from (2.1) and (7.1) we can also get

∇̃BXN2 = −BM2X, (7.4)

where M2 ≡ K−bα. Equations (7.3) and (7.4) are Weingarten equations
with respect to the semi-symmetric non-metric connection ∇.

8. Riemannian curvature tensor for semi-symmetric non-
metric connection

Let R̃(X̃, Ỹ )Z̃ be the Riemannian curvature tensor of the enveloping
manifold Mn+1 with respect to the semi-symmetric non-metric connec-
tion ∇, then

R̃(X̃, Ỹ )Z̃ = ∇̃X̃∇̃Ỹ Z̃ − ∇̃Ỹ ∇̃X̃Z̃ − ∇̃[X̃,Ỹ ]Z̃.
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Replacing X̃ by BX, Ỹ by BY and Z̃ by BZ, we get

R̃(BX,BY )BZ = ∇̃BX∇̃BY BZ − ∇̃BY ∇̃BXBZ − ∇̃[BX,BY ]BZ.

Using (7.3), we get

R̃(BX, BY )BZ = ∇̃BX{B(∇Y Z) + m(Y, Z)N1 + n(Y, Z)N2}
−∇̃BY {B(∇XZ) + m(X,Z)N1 + n(X,Z)N2}
−{B(∇[X,Y ]Z) + m([X, Y ], Z)N1 + n([X, Y ], Z)N2}.

Again using (5.5), (7.3), (7.4) and (5.9), we have

R̃(BX, BY )BZ = BR(X,Y, Z) + B{m(X, Z)M1Y −m(Y, Z)M1X

+n(X, Z)M2Y − n(Y, Z)M2X}
+m{ηα(Y )X − ηα(X)Y,Z}N1

+n{ηα(Y )X − ηα(X)Y,Z}N2

+{(∇Xm)(Y,Z)− (∇Y m)(X,Z)}N1

+{(∇Xn)(Y, Z)− (∇Y n)(X, Z)}N2

+l(X){m(Y,Z)N2 − n(Y,Z)N1}
−l(Y ){m(X,Z)N2 − n(X,Z)N1},

where R(X, Y, Z) being the Riemannian curvature tensor of the sub-
manifold with respect to the semi-symmetric non-metric connection ∇.
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