• Title/Summary/Keyword: Xenograft Mice

Search Result 127, Processing Time 0.022 seconds

Distinct Pro-Apoptotic Properties of Zhejiang Saffron against Human Lung Cancer Via a Caspase-8-9-3 Cascade

  • Liu, Dan-Dan;Ye, Yi-Lu;Zhang, Jing;Xu, Jia-Ni;Qian, Xiao-Dong;Zhang, Qi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6075-6080
    • /
    • 2014
  • Lung cancer is the leading cause of cancer-related death worldwide. Here we investigated the antitumor effect and mechanism of Zhejiang (Huzhou and Jiande) saffron against lung cancer cell lines, A549 and H446. Using high performance liquid chromatography (HPLC), the contents of crocin I and II were determined. In vitro, MTT assay and annexin-V FITC/PI staining showed cell proliferation activity and apoptosis to be changed in a dose- and time-dependent manner. The inhibition effect of Jiande saffron was the strongest. In vivo, when mice were orally administered saffron extracts at dose of 100mg/kg/d for 28 days, xenograft tumor size was reduced, and ELISA and Western blotting analysis of caspase-3, -8 and -9 exhibited stronger expression and activity than in the control. In summary, saffron from Zhejiang has significant antitumor effects in vitro and in vivo through caspase-8-caspase-9-caspase-3 mediated cell apoptosis. It thus appears to have more potential as a therapeutic agent.

Preparation and Antitumor Activity of a Tamibarotene-Furoxan Derivative

  • Wang, Xue-Jian;Duan, Yu;Li, Zong-Tao;Feng, Jin-Hong;Pan, Xiang-Po;Zhang, Xiu-Rong;Shi, Li-Hong;Zhang, Tao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6343-6347
    • /
    • 2014
  • Multi-target drug design, in which drugs are designed as single molecules to simultaneously modulate multiple physiological targets, is an important strategy in the field of drug discovery. QT-011, a tamibarotene-furoxan derivative, was here prepared and proposed to exert synergistic effects on antileukemia by releasing nitric oxide and tamibarotene. Compared with tamibarotene itself, QT-011 displayed stronger antiproliferative effects on U937 and HL-60 cells and was more effective evaluated in a nude mice U937 xenograft model in vivo. In addition, QT-011 could release nitric oxide which might contribute to the antiproliferative activity. Autodocking assays showed that QT-011 fits well with the hydrophobic pocket of retinoic acid receptors. Taken together, these results suggest that QT-011 might be a highly effective derivative of tamibarotene and a potential candidate compound as antileukemia agent.

The Molecular Functions of RalBP1 in Lung Cancer

  • Lee, Seunghyung
    • Biomedical Science Letters
    • /
    • v.20 no.2
    • /
    • pp.49-55
    • /
    • 2014
  • RalBP1 is an ATP-dependent non-ABC transporter, responsible for the major transport function in many cells including many cancer cell lines, causing efflux of glutathione-electrophile conjugates of both endogenous metabolites and environmental toxins. RalBP1 is expressed in most human tissues, and is over-expressed in non-small cell lung cancer cell lines and in many other tumor types. Blockade of RalBP1 by various approaches has been shown to increase sensitivity to radiation and chemotherapeutic drugs, leading to cell apoptosis. In xenograft tumor models in mice, RalBP1 blockade or depletion results in complete and sustained regression across many cancer cell types including lung cancer cells. In addition to its transport function, RalBP1 has many other cellular and physiological functions, based on its domain structure which includes a unique Ral-binding domain and a RhoGAP catalytic domain, as well as docking sites for multiple signaling proteins. Additionally, RalBP1 is also important for stromal cell function in tumors, as it was recently shown to be required for efficient endothelial cell function and angiogenesis in solid tumors. In this review, we discuss the cellular and physiological functions of RalBP1 in normal and lung cancer cells.

Synergism of Cytotoxicity Effects of Triptolide and Artesunate Combination Treatment in Pancreatic Cancer Cell Lines

  • Liu, Yao;Cui, Yun-Fu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5243-5248
    • /
    • 2013
  • Background: Triptolide, extracted from the herb Tripteryglum wilfordii Hook.f that has long been used as a natural medicine in China, has attracted much interest for its anti-cancer effects against some kinds of tumours in recent years. Artesunate, extracted from the Chinese herb Artemisia annua, has proven to be effective and safe as an anti-malarial drug that possesses anticancer potential. The present study attempted to clarify if triptolide enhances artesunate-induced cytotoxicity in pancreatic cancer cell lines in vitro and in vivo. Methods: In vitro, to test synergic actions, cell viability and apoptosis were analyzed after treatment of pancreatic cancer cell lines with the two agents singly or in combination. The molecular mechanisms of apoptotic effects were also explored using qRT-PCR and Western blotting. In vivo, a tumor xenograft model was established in nude mice, for assessment of inhibitory effects of triptolide and artesunate. Results: We could show that the combination of triptolide and artesunate could inhibit pancreatic cancer cell line growth, and induce apoptosis, accompanied by expression of HSP 20 and HSP 27, indicating important roles in the synergic effects. Moreover, tumor growth was decreased with triptolide and artesunate synergy. Conclusion: Our result indicated that triptolide and artesunate in combination at low concentrations can exert synergistic anti-tumor effects in pancreatic cancer cells with potential clinical applications.

Specificity of Intracellular Trans-Splicing Reaction by hTERT-Targeting Group I Intron

  • Jung, Heung-Su;Kwon, Byung-Su;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • v.3 no.4
    • /
    • pp.172-174
    • /
    • 2005
  • Recent anti-cancer approaches have been based to target tumor-specifically associated and/or causative molecules such as RNAs or proteins. As this specifically targeted anti-cancer modulator, we have previously described a novel human cancer gene therapeutic agent that is Tetrahymena group I intron-based trans-splicing ribozyme which can reprogram and replace human telomerase reverse transcriptase (hTERT) RNA to selectively induce tumor-specific cytotoxicity in cancer cells expressing the target RNA. Moreover, the specific ribozyme has been shown to efficiently retard tumor tissues in xenograft mice which had been inoculated with hTERT-expressing human cancer cells. In this study, we assessed specificity of trans-splicing reaction in cells to evaluate the therapeutic feasibility of the specific ribozyme. In order to analyze the trans-spliced products by the specific ribozyme in hTERT-positive cells, RT, 5'-end RACE-PCR, and sequencing reactions of the spliced RNAs were employed. Then, whole analyzed products resulted from reactions only with the hTERT RNA. This study suggested that the developed ribozyme perform highly specific RNA replacement of the target RNA in cells, hence trans-splicing ribozyme will be one of specific agents for genetic approach to revert cancer.

Optical Imaging Technology for Real-time Tumor Monitoring

  • Shin, Yoo-kyoung;Eom, Joo Beom
    • Medical Lasers
    • /
    • v.10 no.3
    • /
    • pp.123-131
    • /
    • 2021
  • Optical imaging modalities with properties of real-time, non-invasive, in vivo, and high resolution for image-guided surgery have been widely studied. In this review, we introduce two optical imaging systems, that could be the core of image-guided surgery and introduce the system configuration, implementation, and operation methods. First, we introduce the optical coherence tomography (OCT) system implemented by our research group. This system is implemented based on a swept-source, and the system has an axial resolution of 11 ㎛ and a lateral resolution of 22 ㎛. Second, we introduce a fluorescence imaging system. The fluorescence imaging system was implemented based on the absorption and fluorescence wavelength of indocyanine green (ICG), with a light-emitting diode (LED) light source. To confirm the performance of the two imaging systems, human malignant melanoma cells were injected into BALB/c nude mice to create a xenograft model and using this, OCT images of cancer and pathological slide images were compared. In addition, in a mouse model, an intravenous injection of indocyanine green was used with a fluorescence imaging system to detect real-time images moving along blood vessels and to detect sentinel lymph nodes, which could be very important for cancer staging. Finally, polarization-sensitive OCT to find the boundaries of cancer in real-time and real-time image-guided surgery using a developed contrast agent and fluorescence imaging system were introduced.

Experimental Model of Cardiac Xenograft, Mouse Heart to Rat. (이종이형의 심장이식의 실험적 모델)

  • Kim, Byung-Il;Sohn, Sang-Tae;Shin, Sung-Ho;Chung, Won-Sang;Kim, Hyuk;Kim, Young-Hak;Kang, Jung-Ho;Jee, Heng-Ok;Lee, Chul-Burm;Seo, Jung-Kuk
    • Journal of Chest Surgery
    • /
    • v.32 no.1
    • /
    • pp.1-4
    • /
    • 1999
  • Background: The transplantation of organs between phylogenetically disparate or harmonious species has invariably failed due to the occurrence of hyperacute rejection or accerelated acute rejection. But, concordant cardiac xenograft offer us an opportunity to study xenotransplantation in the absence of hyperacute rejection. Current therapeutics for the prolongation of survival of rodent concordant xenotransplantation are not ideal with many regimens having a high mortality rate. Cyclosporine A & Mycophenolate Mofetil are new immunosuppresive agent which has been shown to be effective at prolonging survival of allograft, as purine synthesis inhibitor. Material and Method: We used white mongrel rats as recipient and mice as donor, divided 4 groups(n=6), control group(Group 1) has no medication or pretreatment, Group 2 has splenectomy as pretreatment 7∼10 days before transplantation, Group 3 has Cyclosporine A treatment group, Group 4 has combined treatment of Cyclosporine A & Mycophenolate Mofetil(RS 61443). We compared survival time. Reuslt: We can't find significant difference of survival time between each groups. Conclusion: We concluded that rejection of cardiac xenograft was different from rejection of allograft, and new immunossuppresive Agent(Mycophenolate Mofetil, Cyclosporine A) was not effective for prolongation of survival time after cardiac xenograft.

  • PDF

Anti-cancer effect of Sarijang on colorectal cancer cells in a xenograft nude mouse model (대장암 세포가 이식된 동물모델에서 사리장의 항암효과에 대한 연구)

  • Lee, Tae-Hee;Song, Hyun-Kyung;Kim, Dong-Yoon;Lee, Isaac;Seo, Hyeong-Ho;Choi, Ji-Young;Kim, Hong-Geun;Choi, Eun-A;Han, Beom-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.451-456
    • /
    • 2018
  • The current study was conducted to confirm the anti-cancer effect of Sarijang, which is a mixture of extracts from purple bamboo salt, Rhynchosia nulubilis, garlic, and Ulmi cortex. Nude mice were injected with a human-derived colorectal cancer cell (HCT116 cell line) and subsequently administered Sarijang for 4 weeks, following which the body weight, organ weight, and tumor size were measured. To evaluate the anti-cancer mechanism of Sarijang, the levels of p16 and extracellular signal-regulated kinase (ERK), cell cycle regulators in colorectal cancer, were measured. To evaluate the toxicity of Sarijang on liver and kidney, aspartate transaminase, alanine transaminase, blood urea nitrogen, and creatinine were analyzed. Sarijang not only reduced the tumor size by enhancing p16 and suppressing ERK, but also showed no side-effect in the liver and kidneys. Taken together, Sarijang has the potential to inhibit tumor growth without side effects, and may be used as a useful functional food.

Effects of Cheongpyesagan-tang and YKK012 on in vitro and in vivo Colon Cancer Cell Growth with and without CPT-11 (청폐사간탕(淸肺瀉肝湯)과 YKK012의 항암제 CPT-11과 병용투여 시 대장암 성장억제에 미치는 효과)

  • Ahn, Hun-Mo;Han, Sang-Yong;Kim, Ji-Hoon;Rho, Tae-Won;Chong, Myong-Soo;Kim, Yun-Kyung
    • The Korea Journal of Herbology
    • /
    • v.30 no.1
    • /
    • pp.33-42
    • /
    • 2015
  • Objectives : The aim of this study was to evaluate the antitumor effects of Cheongpyesagan-tang(CST) and YKK012 on colon cancer. Methods : MTT assay was used to evaluate the cytotoxicity of Single herbs and combinations of CST and YKK012 on murine colon cancer cells, Colon 38. To explain effects of apoptosis in colon cancer, we performed the western blot. Effects of CST and YKK012 on antitumor activity of CPT-11 using the murine colon38 allograft tumor in BDF1 mice. Results : Single herbs and combinations of CST and YKK012 was tested in vitro, Rhei Radix (RH) and Scutellariae Radix (SC) and YKK012 showed dose-response cytotoxicity on Colon 38. This might be due to the apoptosis, as we see Bax and Caspase-3, which are apoptotic factors, was expressed in RH and SC treated cells. YKK012 also showed increased expression of Caspase-3. In mouse colorectal cancer xenograft model of colon38 cells, herbal combinations showed tendencies of tumor regression, but was not significant. Furthermore, because toxicity was observed in CST group, we reduced the dose of CST for the next experiment. The anti-tumor effects of herbal combinations were insufficient to be used as single anti-tumor agent. With simultaneous usage of CPT-11, contrary to that CST showed no synergistic effects, YKK012 which was composed by the combination of four $ER{\beta}$ selective herbs, significantly reduced the size of tumor and Bax expression was increased. Conclusions : We suggest YKK012 can be a effective cancer adjuvant therapy with CPT-11 on colon cancer.

Antitumor Activity of 7-[2-(N-Isopropylamino)ethyl]-(20s)-camptothecin, CKD602, as a Potent DNA Topoisomerase I Inhibitor

  • Lee, Jun-Hee;Lee, Ju-Mong;Kim, Joon-Kyum;Ahn, Soon-Kil;Lee, Sang-Joon;Kim, Mie-Young;Jew, Sang-Sup;Park, Jae-Gab;Hong, Chung-Il
    • Archives of Pharmacal Research
    • /
    • v.21 no.5
    • /
    • pp.581-590
    • /
    • 1998
  • We developed a novel water-soluble camptothecin analobue, CKD602, and evaluated the inhibition of topoisomerase I and the antitumor activities against mammalian tumor cells and human tumor xenografts. CKD602 was a nanomolar inhibitor of the topoisomerase I enzyme in the cleavable complex assay. CKD602 was found to be 3 times and slightly more potent than topotecan and camptothecin as inhibitors of topoisomerase, respecitively. In tumor cell cytotoxicity, CKD602 was more potent than topotecan in 14 out of 26 human cancer cell lines tested, while it was comparable to camptothecin. CKD602 was tested for the in vivo antitumor activity against the human tumor xenograft models. CKD602 was able to imduce regression of established HT-29, WIDR and CX-1 colon tumors, LX-1 lung tumor, MX-1 breast tumor and SKOV-3 ovarian tumor as much as 80, 94, 76, 67, 87% and 88%, respectively, with comparable body weight changes to those of topotecan. Also the therapeutic margin (R/Emax: maximum tolerance dose/$ED-{58}$) of CKD602 was significantly higher than that of topotecan by 4 times. Efficacy was determined at the maximal tolerated dose levels using schedule dependent i.p. administration in mice bearing L1210 leukemia. On a Q4dx4 (every 4 day for 4 doses) schedule, the maximum tolerated dose (MTD) was 25 mg/kg per administration, which caused great weight loss and lethality in <5% tumor bearing mouse. this schedule brought significant increase in life span (ILS), 212%, with 33% of long-term survivals. The ex vivo antitumor activity of CKD602 was compared with that of topotecan and the mean antitumor index (ATI) values recorded for CKD602 were significantly higher than that noted for topotecan. From these results, CKD602 warrants further clinical investigations as a potent inhibitor of topoisomerase I.

  • PDF