• Title/Summary/Keyword: XO/HX

Search Result 31, Processing Time 0.018 seconds

Effects of Sophorae Radix Extract in Rat Cardiac Endothelial Cells (고삼 추출물이 배양 심장내피세포에 미치는 영향)

  • Kwon Kang Beom;Park Cheon Su;Kim In Gyu;Kim Hyun Gyu;Choi Ki Bang;Kim Yong Bok;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.220-224
    • /
    • 2003
  • To test the protective effect of Sophorae Radix (SR) on the damage of cardiac endothelial cells by xanthine oxidase (XO)/hypoxanthine (HX)-induced oxygen tree radical, Neutral Red (NR), lactate dyhydrogenase (LDH), and c-fos immunopositive cells assay were used in the presence of SR extract. The results of these experiments were obtained as follows ; Cardiac endothelial cells treated with XO/HX showed the cytotoxicity such as a decrease in viability, and increases in LDH activity and c-fos immunopositive cells. Cardiac endothelial cells pretreated with SR extract protected the increase of LDH activity. Alos, cardiac endothelial cells pretreated with SR extract inhibited the increase of c-fos immunopositive cells. These results show that XO/HX induces toxic effects in cultured cardiac endothelial cells derived from neonatal rat, and suggest that SR extract is very effective in the prevention of XO/HX-induced toxicity.

Effects of Guaruhaebaekbanha-tang Extract on Beating Rate and LDH Activity in Cultured Rat Myocardial Cells (과루해백반하탕 추출물이 배양 심근세포의 박동수와 LDH 활성도에 미치는 영향)

  • An Hyo Chang;Kwon Kang Beam;Park Eun Young;Jang Seung Ho;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.289-295
    • /
    • 2002
  • To certify the protective effect of herbal medicine against oxygen free radical-induced myocardiotoxicity, cytotoxicity was measured using MTT, LDH activity and Beating rate assay in the presence of Guaruhaebaekbanha-tang(GHBT) extracts or single constituents of this prescription. Myocardial toxicity was evaluated in neonatal rat myocardiocytes in cultures. In the present study, xanthine oxidase/hypoxanthine(XO/HX) resulted in a decrease in cell viability, increases in LDH activity in culture medium and decreases in beating rate in cultured myocardial cells. In the effect of GHBT extract, it showed the prevention from the XO/HX-induced cardiotoxicity by the increases of cell viability and beating rate as well as the decrease of LDH activity. In the protective effect of Fructus Trichosanthis(FT), Bulbus Allii Macrostemi(BAM) and Rhizoma Pinelliae(RP), all the extracts were significantly effective in the protection of XO/HX-induced cardiotoxocity in cultured myocardial cells by the increase of beating rate as well as th decrease of LDH activity. From these results, they show that XO/HX is cardiotoxic in cultured myocardial cells derived from neonatal rat, and it suggests that GHBT, FT, SAM, RP extracts are positively effective in the blocking in XO/HX-induced cardiotoxicity.

Effects of Mangeum-tang and Gamimangeum-tang on the Cultured Spinal Dorsal Root Ganglion Cells (만금탕 및 가미만금탕이 배양 척수후근신경절 세포에 미치는 영향)

  • Choi Gyu Seon;Yun Sang Hak;Yeom Seung Ryong;Lee Su kyung;Shin Byung Cheul;Kwon Young Dal;Song Yung Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.503-509
    • /
    • 2003
  • The purpose of this study is to examine the toxic effects caused by xanthine oxidase/hypoxanthine (XO/HX) and the effects of herbal extracts such as Mangeum-tang (萬金湯: MGT) and Gamimangeum-tang (加味萬金湯: GMGT) on the treatment of the toxic effects. The results of these experiments were XO/HX, an oxygen radical-generating system, decreased the survival rates of the cultured cells on XTT assay, the amount of DNA syntheses, and the amount of neurofilaments, and increased c-fos positive cells, MGT and GMGT have the efficacy of increasing the survival rates of the cultured cells by increasing the amount of neurofilaments and DNA synthesis and decreasing the c-fos positive cells damaged by XO/HX, From the above results, it is suggested that MGT and GMGT have marked efficacy as a treatment for the damages caused by the XO/HX-mediated oxidative stress. And MGT and GMGT are thought to have certain pharmacological effects.

Effects of Tongryeong-san and Constituents Extract in Cultured Rat Myocardial Cells (통령산과 구성약물 추출물이 배양 심근세포에 미치는 영향)

  • Seong Eun Kyung;Kwon Kang Beom;Kim In Su;Kang Gil Seong;Kim In Gyu;Kim In Seob;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.1031-1036
    • /
    • 2003
  • To certify the protective effect of herbal medicine against oxygen free radical-induced myocardiotoxicity, cytotoxicity was measured using TBARS assay and Beating rate in the presence of Tongryeong-san(TRS) extracts or single constituents of this prescription. Myocardial toxicity was evaluated in neonatal rat myocardiocytes in cultures. In the present study, xanthine oxidase/hypoxanthine (XO/HX) resulted in a increase in lipid peroxidation and decreases in beating rate in cultured myocardial cells. In the effect of TRS extract, it showed the prevention from the XO/HX-induced cardiotoxicity by the increases of beating rate as well as the decrease of lipid peroxidation, In the protective effect of Faeces Trogopterori(FT), Pollen Typhae(PT), Caulis Akebiae(CA) and Radix Paeoniae Rubra(PRR), all the extracts were significantly effective in the protection of XO/HX-induced cardiotoxocity in cultured myocardial cells by the increase of beating rate as well as th decrease of lipid peroxidation. From these results, they show that XO/HX is cardiotoxic in cultured myocardial cells derived from neonatal rat, and it suggests that TRS, FT, PT, CA and PRR extracts are positively effective in the blocking in XO/HX-induced cardiotoxicity.

Effects of Sujeom-san Water Extract in Cultured Rat Myocardial Cells (수념산 전탕액이 배양 심근세포에 미치는 영향)

  • Jean Young Seok;Kwon Kang Beam;Park Eun Young;Soong Eun Kyung;Park Seung Taeck;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.353-358
    • /
    • 2002
  • To test the protective effect of herbal medicine against oxygen free radical-induced myocardiotoxicity, cytotoxicity of xanthine oxidase/hypoxanthine (XO/HX) was examined using MTT, TBARS, and beating rate assay in the presence of water extract of Sujeom-san(SJS) or single consituents of its prescription. Myocardial toxicity was evaluated in neonatal rat myocardiocytes in cultures. In the present paper, XO/HX resulted in a decrease in viability and beating rate and increases in lipid peroxidation in cultured myocardial cells. In the effect of SJS water extract, it showed effects from the cardiocytotoxicity induced by XO/HX treatment such as increases in beating rate and decreases in lipid peroxidation. In the effect of Rhizoma Corydalis (RC), Faeces Trogopterori (FT), Fructus Amomi Tsaoko (FAT) and Myrrha on the cardiocytotoxicity, they were significantly effective in blocking the XO/HX-induced cardiocytotoxicity by increase of beating rate in FAT and FT group as well as decrease of lipid peroxidation in FT and RC group. These results show that oxygen free radical elicits toxic effects in cultured myocardial cells derived from neonatal rat, and suggest that water extract of Sujeomsan, Rhizoma Corydalis, Faeces Trogopterori, Fructus Amomi Tsaoko or Myrrha is very effective in the prevention of xanthine oxidase/hypoxanthine- induced cardiotoxicity.

A Study on the Mechanism of Oxidative Stress, Screening of Protective Agents and Signal Transduction of Cell Differentiation in Cultured Osteoblast and Osteoclast Damaged by Reactive Oxygen Species

  • Park Seung-Taeck;Jeon Seung-Ho
    • Biomedical Science Letters
    • /
    • v.11 no.3
    • /
    • pp.319-326
    • /
    • 2005
  • It is well known that oxidative stress of reactive oxygen species (ROS) may be a causative factor in the pathenogenesis of bone disorder on osteoblast or osteoclast. The purpose of this study was to evaluate the cytotoxicity of oxidative stress, protective effect of glutamate receptor antagoinst against ROS-induced osteotoxicity, secretion of tumor necrosis factor $(TNF)-\alpha$ and the expression of c-fos gene in the cultured rat osteoblasts and osteoclasts. Cell viability by MTS assay or !NT assay, activity of glutathione peroxidase (GPx), lipid peroxidation (LPO) activity, protein synthesis by sulforhodamine B (SRB) assay, alkaline phosphatase (ALP) activity, lactate dehydrogenase (LDH) activity, MTS assay for NMDA (N-methyl-D-aspartate) receptor antagonist or AMPA/kainate receptor antagonist, measurement for $TNF-\alpha$, and c-fos gene expression were performed after these cells were treated with or without various cocentrations of xanthine oxidase (XO), hypoxanthine (HX), D-2-amino-5-phosphonovaleric acid (APV), 7-chlorokynurenic acid (CKA), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6,7-dinitroquinoxaline-2,3-dione (DNQX), respectively. In this study, XO/HX showed decreased cell viability and glutathione peroxidase (GPx) activity, but it showed increased LPO activity, $TNF-\alpha$ secretion and c-fos expression. APV and CKA incresed protein sythesis and ALP activity. While, CNQX or DNQX did not show any protective effect in LDH activity or cell viability. From these results, XO/HX showed cytotoxic effect in cultured rat osteoblast or osteoclast, and also NMDA receptor antagonist such as APV or CKA was effective in blocking XO/HX-induced osteotoxicity in these cultures.

  • PDF

Comparative Study on the Toxic Mechanism of Oxidant-Induced Neurotoxicity and Protective Effects of Several Herb Extracts as a Nerve Growth Factor in Spinal Motor Neurons Damaged by Oxygen Radicals (신경성장인자(神經成長因子)로서의 약류별(藥類別) 한약제(韓藥劑)가 척수(脊髓) 운동신경세포(運動神經細胞)의 손상(損傷)에 미치는 효능(效能) 및 기전(機轉)에 관(關)한 비교(比較) 연구(硏究))

  • Park Seung-Taeck;Yoon Hyang-Suk;Hyoung Keon-Young;Cho Chung-Gu;Lee Kang-Chang;Kim Won-Shin;Kim Hyung-Min;Jeon Byung-Hoon;Yun Young-Gap
    • Herbal Formula Science
    • /
    • v.7 no.1
    • /
    • pp.131-141
    • /
    • 1999
  • In order to eludidate the mechanism of oxidative stress in cultured spinal motor neurons damaged by oxygen free radicals, cytoxicity was assesed by MTT assay and NR assay after spinal motor neurons from mouse were cultured in media containing various concentrations of xanthine oxidase(XO) and hypoxanthine(HX) for 3 hours. In addition, neuroprotective effects of several herb extracts on oxidant-induced neurotoxicity were examined in these cultures, compared with nerve growth factors such as basic fibroblast growth factor(bFGF). XO/HX decreased cell viability in dose- and time dependent manners on cultured mouse spinal motor neurons, and MTT50 and NR50 values were measured at 20mU/ml XO and 0.1mM HX for 3 hours in these cultures. bFGF significantlt increased cell viability. In neuroprotective of herb extracts, Epimedium Koreanum Nakai(EK) and Alpinia oxphylla Mig(IJI) was very effective in the prevention of the neurotoxicity induced by XO/HX in cultured mouse spinal motor neurons. From the above results, it is suggested that XO/HX shows toxic effect in cultured mouse spinal motor neurons and selective herb extracts such as Epimedium Koreanum Nakai(EK) and Alpinia oxphylla Mig(IJI) were very effective in the increase of cell viability against the neurotoxicity induced by oxygen radicals in these cultures.

  • PDF

Effects of Gamijingansikpungtang on Cultured Spinal Motor Neurons (가미진간식풍탕(加味鎭肝熄風湯)이 손상(損傷)된 배양척수운동신경세포(培養脊髓運動神經細胞)에 미치는 영향(影響))

  • Kim, Seong-Hwan;Sim, Jeong-Sub;Kim, Kang-San;Kang, Byung-Ki;Lee, Jae-Ik
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.283-290
    • /
    • 2000
  • The purpose of this study is to examine the toxic effects caused by xanthine oxidase/hypoxanthine(XO/HX) and the effects of herbal extracts such as Jingansikpungtang(JST) and Gamijingansikpungtang(GJST) on the treatment of the toxic effects. For this purpose, experiments with the cultured nerve cells from the spinal motor neurons of new born mice were done. The results of these experiments were as follows. XO/HX, a oxygen radical-generating system, decreased the survival rate of the cultured cells on NR assay. MTT assay, the amount of neurofilaments and increased the amount of total proteinand increased the lipid peroxidation and the amount of LDH JST has the efficacy of increasing the amount of neurofilaments and total protein, and decreasing the lipid peroxidation and the amount of LDH, GJST has efficacy of increasing the amount of neurofilaments and total protein, and decreasing lipid peroxidation and the amount of LDH. From the above results, it is concluded that JST and GJST have marked efficacy as a treatment for the damages caused in the XO/HX mediated oxidative stress. And JST and GJST are thought to have certain pharmacologicall effects. Further clinical study of this pharmacological effects of JST and GJST should be complemented.

  • PDF

Effect of EGF against Oxygen Radical-Induced Neurotoxicity in Cultured Spinal Dorsal Root Ganglion Neurons of Mouse (산소자유기에 의해 저해된 배양 척수감각 신경절 세포에 대한 상피세포성장인자의 영향)

  • Park, Seung-Taeck;Kim, Hyung-Ryong;Chae, Han-Jung
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.99-104
    • /
    • 1997
  • In order to elucidate the cytotoxic effect of oxygen radicals on cultured spinal dorsal root ganglion(DRG) neurons derived from mouse. the neurotoxic effect of oxygen radicals w as examined after cultured DRG neurons were exposed to xanthine oxidase(XO) and hypoxanthine(HX)-oxygen radical generating system. In addition. neuroprotective effect of epidermal growth factor(EGF) against oxidant-induced neurotoxicity was also evaluated in these cultures. The results were, as follows: 1. Lethal concentration 50(LC$_{50}$) was 35mU/ml XO and 0.1mM HX in cultured DRG neurons. 2. Oxygen radicals induced the morphological changes such as the decrease of cell number and loss of neurites in these cultures. 3. EGF increased the cell viability and neurofilament in neurons damaged by oxygen radicals. From above the results, it is suggested that oxygen radicals have a cytotoxic effect on cultured DRG neurons of neonatal mouse and selective neurotrophic factors such as EGF are, effective, in blocking the neurotoxicity induced by oxygen radicals in cultured spinal DRG neurons.

  • PDF

Effect of Oxidative Stress and Glutamate Receptor Antagonist on Cultured Rat Osteoblast and Osteoclast (백서의 배양 골아세포와 파골세포에 대한 산화적 손상과 Glutamate 수용체 길항제의 영향)

  • Park Seung Taeck;Jeon Seung Ho;Lee Byung Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.996-1001
    • /
    • 2003
  • It is well known that oxidative stress of reactive oxygen species(ROS) may be a causative factor in the pathogenesis of bone disorder. The purpose of this study was to evaluate the cytotoxicity of oxidative stress. Cell viability by MTS assay or INT assay, activity of glutathione peroxidase(GPx), lipid peroxidation(LPO) activity and cell viablity. And also protctive effect of glutamate receptors against ROS-induced osteotoxicity was examined by protein synthesis, alkaline phosphatase (ALP) activity and lactate dehydrogenase (LDH) activity in cultured rat osteoblasts and osteoclasts. XO/HX decreased cell viability and GPx activity, protein synthesis and ALP activity, but increased LPO activity and LDH activity. In the protective effect, N-methyl-D-aspartate (NMDA) receptor antagonists or AMPA/kainate receptor antagonists such as D-2-amino-5-phosphonovaleric acid (APV), 7-chlorokynurenic acid (CKA), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6,7-dinitroquinoxaline-2,3-dione (DNQX), NMDA receptor antagonists but AMPA/kainate receptor antagonists showed protective effect on xanthine oxidase (XO) and hypoxanthine (HX) in these cultures by the increse of protein synthesis, ALP activity.