• Title/Summary/Keyword: X-ray diffractometer (XRD)

Search Result 274, Processing Time 0.032 seconds

Effect of metal buffer layers on the growth of GaN on Si substrates (실리콘 기판위에 금속 완충층을 이용한 GaN 성장과 특성분석)

  • Lee, Jun Hyeong;Yu, Yeon Su;Ahn, Hyung Soo;Yu, Young Moon;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.4
    • /
    • pp.161-166
    • /
    • 2013
  • AlN buffer layers have been used for the growth of GaN layers on Si substrates. However, the doping of high concentration of carriers into AlN layers is still not easy, therefore it may cause the increase of series resistance when it is used for the electrical or optical devices. In this work, to improve such a problem, the growth of GaN layers on Si substrates were performed using metal buffer layers instead of AlN buffer layer. We tried combinations of Ti, Al, Cr and Au as metal buffer layers for the growth of GaN on Si substrates. Surface morphology was measured by optical microscope and scanning electron microscope (SEM), and optical properties and crystalline quality were measured by photoluminescence (PL) and X-ray diffractometer (XRD), respectively. Electrical resistances for both cases of AlN and metal buffer layer were compared by current-voltage (I-V) measurement.

Effect of Thickness on the Properties of Al Doped ZnO Thin Films Deposited by Using PLD (Al이 도핑된 ZnO 소재의 PLD 박막 두께 변화가 특성에 미치는 영향)

  • Pin, Min-Wook;Bae, Ki-Ryeol;Park, Mi-Seon;Lee, Won-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.568-573
    • /
    • 2011
  • AZO (Al doped ZnO) thin films were deposited on the quartz substrates with thickness variation from 25 to 300 nm by using PLD (pulsed laser deposition). XRD (x-ray diffractometer), SPM (scanning probe microscopy), Hall effect measurement and uv-visible spectrophotometer were employed to investigate the structural, morphological, electrical and optical properties of the thin films. XRD results demonstrated that films were preferrentially oriented along the c-axis and crystallinity of film was improved with increase of film thickness. As for the surface morphologies, the mean diameter and root mean square of grains were increased as the film thickness was increased. When the film thickness was 200 nm, the lowest resistivity of $4.25{\times}10^{-4}\;{\Omega}cm$ obtained with carrier concentration of $6.84{\times}10^{20}\;cm^{-3}$ and mobility of $21.4\;cm^2/V{\cdot}S$. All samples showed more than 80% of transmittance in the visible range. Upon these results, it is found that the samples thickness can affect their structural, morphological, optical and electrical properties. This study suggests that the resistivity can be improved by controlling film thickness.

Fabrication and magnetic properties of Co-Zn ferrite thin films prepared by a sol-gel process (Sol-gel 법에 의한 Co-Zn Ferrite 박막의 제호와 자기 특성에 관한 연구)

  • 김철성;안성용;이승화;양계준;류연국
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.4
    • /
    • pp.168-172
    • /
    • 2001
  • Co-Zn ferrite thin films grown on thermally oxidized silicon wafers were fabricated by a sol-gel method. Magnetic and structural properties of Co-Zn thin films were investigated by using x-ray diffractometer (XRD), atomic force microscopy (AFM), auger electron spectroscopy (AES) and a vibrating sample magnetometer (VSM). Co-Zn ferrite thin films annealed at 400 $^{\circ}C$ presented have only a single phase spinel structure without any preferred crystallite orientation. Their surface roughness of Co-Zn ferrite thin films was shown as less than 3 nm and the grain size was about 40 nm for annealing temperatures over 600 $^{\circ}C$. A moderate saturation magnetization of Co-Zn ferrite thin films for recording media was obtained in this study and there is no significant difference of their magnetic property with those external fields of parallel and perpendicular to planes of the films. The maximum value of the coercivity was obtained as 1,900 Oe for Co-Zn ferrite thin film annealed at 600 $^{\circ}C$.

  • PDF

Fabrication of TiAl alloy by centrifugal casting and its microstructure (원심주조법에 의한 TiAl 합금의 제조 및 미세구조 분석)

  • Ryu, Jeong Ho;Lee, Ho Jun;Cho, Hyun Su;Paeng, Jong Min;Park, Jong Bum;Lee, Jung-Il
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.5
    • /
    • pp.229-234
    • /
    • 2017
  • In this study, TiAl alloy was fabricated by a centrifugal casting method for turbo charge of automotive. Optimum conditions for defectless morphology using various ceramic mold were investigated. The crystal structure, microstructure, and chemical composition of the TiAl prepared by centrifugal casting were studied by X-ray diffractometer (XRD), optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS), microvickers hardness analyzer (HV). Two kinds of dendrite structures were observed with 4-fold and 6-fold symmetries. The FE-SEM, EDS and HV examinations of the as-cast TiAl showed that the thickness of the oxide layer (${\alpha}$-case) was typically less than $50{\mu}m$.

Characteristics of Pt/C-based Catalysts for HI Decomposition in SI process (SI 공정에서 HI 분해를 위한 백금담지 활성탄 촉매의 특성)

  • Kim, J.M.;Kim, Y.H.;Kang, K.S.;Kim, C.H.;Park, C.S.;Bae, K.K.
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.3
    • /
    • pp.199-208
    • /
    • 2008
  • HI decomposition was conducted using Pt/C-based catalysts with a fixed-bed reactor in the range of 573 K to 773 K. To examine the change of the characteristic properties of the catalysts, $N_2$ adsorption analyser, a X-ray diffractometer(XRD), and a scanning electron microscopy(SEM) were used before and after the HI decomposition reaction. the effect of Pt loading on HI decomposition was investigated by $CO_2$-TPD. HI conversion of all catalysts increased as decomposition temperature increased. The XRD analysis showed that the sizes of platinum particle became larger and agglomerated into a lump during the reaction. From $CO_2$-TPD, it can be concluded that the cause for the increase in catalytic activity may be attributed to the basic sites of catalyst surface. The results of both b desorption and gasification reaction showed the restriction on the use of Pt/C-based catalyst.

Fabrication and Characterization of Bi2O3-MgO-ZnO-Nb2O5 Thin Films by Pulsed Laser Deposition (펄스 레이저 증착법으로 제작된 Bi2O3-MgO-ZnO-Nb2O5 박막의 제작 및 특성 분석)

  • Bae, Ki-Ryeol;Lee, Dong-Wook;Elanchezhiyan, J.;Lee, Won-Jae;Bae, Yun-Mi;Shin, Byoung-Chul;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.211-215
    • /
    • 2010
  • Pulsed laser deposition is a very efficient technique for fabricating thin films of complex compounds. In the present work, $Bi_2O_3$-MgO-ZnO-$Nb_2O_5$ (BMZN) pyrochlore thin films were deposited on platinized Si substrates at various temperatures by using pulsed laser deposition technique. These films have been characterized by X-ray diffractometer (XRD), atomic force microscopy (AFM) to investigate their structural, morphological properties. MIM structure was manufactured to analyze di-electrical properties of BMZN thin films. XRD results reveal the thin films deposited at less than $400^{\circ}C$ show only amorphous phase, the crystallized thin films was observed when the thin films were prepared temperature at above $500^{\circ}C$. From AFM, it was known that the thin film grown at $400^{\circ}C$ is the densest. Dielectric constant increased with increasing temperature up to $400^{\circ}C$ at 100 kHz and dramatically decreased at the higher temperature. A aspect of dissipation factor was the exact opposite of dielectric constant. BMZN thin films grown at $400^{\circ}C$ exhibited a high dielectric constant of 60.9, a low dissipation factor of 0.007 at 100 kHz.

Preparation of a Novel PU-LMO Adsorbent by Immobilization of LMO on Polyurethane Foam for Recovery of Lithium Ions (폴리우레탄 폼에 LMO를 고정화하여 리튬이온 회수를 위한 새로운 PU-LMO 흡착제의 제조)

  • You, Hae-Na;Lee, Min-Gyu
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.277-282
    • /
    • 2014
  • In this study, PU-LMO was made by immobilization of LMO on urethane foam (PU) with using an EVA as a binder. PU-LMO was characterized by using X-Ray Diffractometer (XRD) and Scanning Electron Microscopy (SEM). The optimal ratio of EVA/LMO for preparation of PU-LMO was 0.26 gEVA/gLMO. The adsorption of lithium ions by PU-LMO was found to follow the pseudo-second-order kinetic model. The equilibrium data fitted well with Langmuir isotherm model and the maximum removal capacity of lithium ions was 17.09 mg/g. The PU-LMO was found to have a remarkably high selectivity of lithium ions and high adsorption capacity because the distribution coefficient ($K_d$) of lithium ion was higher than those of other metal ions.

Photoelectrochemical Characteristics for Cathodic Electrodeposited Cu2O Film on Indium Tin Oxide (음극전착법을 이용한 Cu2O 막의 광전기 화학적 특성)

  • 이은호;정광덕;주오심;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.183-189
    • /
    • 2004
  • Cuprous oxide (Cu$_2$O) thin films are cathodically deposited on Indium Tin Oxide (ITO) substrate. The as-deposited films were heat-treated at 30$0^{\circ}C$ to obtain Cu$_2$O. After the heat treatment, the film was changed from Cu metal into Cu$_2$O phase. The phase, morphology and photocurrent density of the films were dependent on the preparation conditions of deposition time, applied voltage, and the duration of heat treatment. The Cu$_2$O films were characterized by X-Ray Diffractometer (XRD) and Scanning Electron Microscope (SEM). The apparent grain size of the films formed by the normal method was larger than those grown by the pulse method. The CU$_2$O film what was deposited at -0.7 V for 300 sec and then, calcined at 30$0^{\circ}C$ for 1 h showed the predominant photocurrent density of 1048 $\mu$A/$\textrm{cm}^2$. And the stability of Cu$_2$O electrodes were improved with chemically deposited TiO$_2$ thin films on Cu$_2$O.

A Study of Reactively Sputtered Ti-Si-N Diffusion Barrier for Cu Metallization (혼합기체 sputtering 법으로 증착된 Cu 확산방지막으로의 Ti-Si-N 박막의 특성 연구)

  • Park, Sang-Gi;Lee, Jae-Gap
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.503-508
    • /
    • 1999
  • We have investigated the physical and diffusion barrier property of Ti-Si-N film for Cu metallization. The ternary compound was deposited by using reactive rf magnetron sputtering of a TiSi$_2$target in an Ar/$N_2$gas mixture. Resistivities of the films were in range of 358$\mu$$\Omega$-cm, to 307941$\mu$$\Omega$-cm, and tended to increase with increasing the $N_2$/Ar flow rate ratio. The crystallization of the Ti-Si-N compound started to occur at 100$0^{\circ}C$ with the phases of TiN and Si$_3$N$_4$identified by using XRD(X-ray Diffractometer). The degree of the crystallization was influenced by the $N_2$/Ar flow ratio. The diffusion barrier property of Ti-Si-N film for Cu metallization was determined by AES, XRD and etch pit by secco etching, revealing the failure temperature of 90$0^{\circ}C$ in 43~45at% of nitrogen content. In addition, the very thin compound (10nm) with 43~45at% nitrogen content remained stable up to $700^{\circ}C$. Furthermore, thermal treatment in vacuum at $600^{\circ}C$ improved the barrier property of the Ti-Si-N film deposited at the $N_2$(Ar+$N_2$) ratio of 0.05. The addition of Ti interlayer between Ti-Si-N films caused the drastic decrease of the resistivity with slight degradation of diffusion barrier properties of the compound.

  • PDF

Evidence of Spin Reorientation by Mössbauer Analysis

  • Myoung, Bo Ra;Kim, Sam Jin;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.126-129
    • /
    • 2014
  • We report the crystallographic and magnetic properties of $Ni_{0.3}Fe_{0.7}Ga_2S_4$ by means of X-ray diffractometer (XRD), a superconducting quantum interference device (SQUID) magnetometer, and a M$\ddot{o}$ssbauer spectroscopy. In particular, $Ni_{0.3}Fe_{0.7}Ga_2S_4$ was studied by M$\ddot{o}$ssbauer analysis for evidence of spin reorientation. The chalcogenide material $Ni_{0.3}Fe_{0.7}Ga_2S_4$ was fabricated by a direct reaction method. XRD analysis confirmed that $Ni_{0.3}Fe_{0.7}Ga_2S_4$ has a 2-dimension (2-D) triangular lattice structure, with space group P-3m1. The M$\ddot{o}$ssbauer spectra of $Ni_{0.3}Fe_{0.7}Ga_2S_4$ at spectra at various temperatures from 4.2 to 300 K showed that the spectrum at 4.2 K has a severely distorted 8-line shape, as spin liquid. Electric quadrupole splitting, $E_Q$ has anomalous two-points of temperature dependence of $E_Q$ curve as freezing temperature, $T_f=11K$, and N$\acute{e}$el temperature, $T_N=26K$. This suggests that there appears to be a slowly-fluctuating "spin gel" state between $T_f$ and $T_N$, caused by non-paramagnetic spin state below $T_N$. This comes from charge re-distribution due to spin-orientation above $T_f$, and $T_N$, due to the changing $E_Q$ at various temperatures. Isomer shift value ($0.7mm/s{\leq}{\delta}{\leq}0.9mm/s$) shows that the charge states are ferrous ($Fe^{2+}$), for all temperature range. The Debye temperature for the octahedral site was found to be ${\Theta}_D=260K$.