• Title/Summary/Keyword: X-선 회절

Search Result 1,240, Processing Time 0.028 seconds

Solvothermal Preparation of Nanocrystalline TiO2 Using Alcohol-water Mixed Solvent (알코올-물 혼합용액을 이용하는 Solvothermal 법에 의한 나노크기의 TiO2 제조)

  • Lee, Sang Geun;Park, Seong Soo;Hong, Seong Soo;Park, Jong Myung;Lee, Seung Ho;Kim, Dae Sung;Lee, Gun Dae
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.685-690
    • /
    • 2011
  • In this study, a solvothermal reaction to prepare nanocrystalline titania was carried out using $TiCl_4$ and mixed solvents of alcohol and water. The effects of the type and the composition of alcohol on the crystal structure and agglomeration of final $TiO_2$ products were investigated. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) as well as scanning electron microscopy (SEM). In the solvothermal reaction using the n-butanol solutions with different volume ratios of n-butanol/water (100/0, 75/25, 50/50, 25/75, 0/100), the extent of agglomeration of obtained rutile $TiO_2$ was found to change with the volume ratio of n-butanol/water, and the n-butanol/water ratio of 75/25 revealed the best result for the preparation of well-dispersed nanocrystalline $TiO_2$ powders. The crystal phase of $TiO_2$ prepared through the solvothermal reaction changed with the type of alcohol in solvent (alcohol/water = 75/25). $TiO_2$ products obtained with the aqueous solutions of methanol, ethanol and isopropanol have an anatase phase, while that with n-butanol has a rutile phase. The results showed that, in the solvothermal reaction using both $TiCl_4$ as a starting material and the alcohol-water mixed solvents without any other additive, the enhancement of dispersion and control of crystal structure of $TiO_2$ products can be feasible by simply varying the composition and type of alcohol in the mixed solvents.

Crystallographic Study on the Selectivity and Distribution of Sr2+ Ions Within Zeolite A In the Presence of Competing Na+ Ions in Aqueous Exchange Solution (Na+ 경쟁이온이 존재하는 수용액에서 Zeolite A 내 Sr2+ 이온의 선택성 및 분포에 관한 결정학적 연구)

  • kim, Hu Sik;Park, Jong Sam;Lim, Woo Taik
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • To study the properties of Sr2+ exchange into zeolite A with increasing the molar concentration of Na+ in given exchange solution, four single crystals of fully dehydrated Sr2+- and Na+- exchanged zeolite A were prepared by the bath method using mixed ion-exchange solutions. The Sr(NO3)2:NaNO3 molar rations of the ion exchange solution were 1:1(crystal 1), 1:100(crystal 2), 1:250(crystal 3), and 1:500 (crystal 4), respectively, with a total concentration of 0.05 M. The single-crystals were then vacuum dehydration at 623 K and 1×10-4 Pa for 2 days. Their single-crystal structures were determined by single-crystal synchrotron X-ray diffraction techniques in the cubic space group Pm3-m, at 100(1) K, and were then refined to the final error indices of R1/wR2=0.047/0.146, 0.048/0.142, 0.036/0.128, and 0.040/0.156 for crystals 1, 2, 3, and 4, respectively. In crystals 1 and 2, the 6 Sr2+ ions are found at three different crystallographic sites. In crystal 3, 1 Sr2+ and 10 Na+ ions are found in large cavity and sodalite unit. In crystal 4, only 12 Na+ ions occupy three equipoints. The degree of Sr2+ ion-exchange decreased sharply from 100 to 16.7 to 0% as the initial Na+ concentration increase and the Sr2+ concentration decrease. In addition, the unit cell constant of the zeolite framework decreased with this lower level of Sr2+ exchange.

Synthesis and Structural Study of Extraframework ZrI6Tl119+ Cationic Cluster in Zeolite A (제올라이트 A 동공 내 비골격 ZrI6Tl119+ 양이온 클러스터의 합성과 구조 연구)

  • Hyeon Seung, Lim;Jong Sam, Park;Cheol Woong, Kim;Woo Taik, Lim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.447-455
    • /
    • 2022
  • Fully dehydrated Tl12-LTA (|Tl12|[Si12Al12O48]-LTA,Tl12-A) was treated with 6.0×103 Pa of ZrI4 (g) at 623 K for 72 hr under anhydrous conditions. The crystal structure of product, |Zr0.25I1.5Tl12|[Si12Al12O48]-LTA, was determined by single-crystal crystallography using synchrotron X-radiation in the cubic space group Pm3m (a = 12.337(2) Å). It was refined using all data to the final error index (for the 712 unique reflections for which Fo> 4σ(Fo) R1/wR2= 0.055/0.189. In this structure, octahedral ZrI62- ions center about 25% of the large cavities (Zr-I = 2.91(4) Å). Each coordinates to eight Tl+ ions and they are further bridged by Tl+ ions in the planes of 8-rings to form a cubic three-dimensional ZrI6Tl119+ cationic cluster. About 1.5 Tl+ ions per unit cell moved to deeper side of sodalite cavity after reaction with ZrI4(g). The remaining Tl+ ions occupy well-established cation positions near 6- and 8-rings.

Non-Destructive Material Analysis of Whetstones Discovered in Grain Transport Ship of the Early Joseon Period (조선 초기 조운선(마도4호선)에서 출수된 숫돌의 비파괴 재질 분석 연구)

  • Dal-Yong Kong;Jae Hwan Kim;Eun Young Park;Yong Cheol Cho;Ki Hong Yang
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.661-674
    • /
    • 2023
  • From the seafloor of Taean, Chungcheongnamdo Province, a ship of the Joseon Dynasty was discovered for the first time in the history of underwater excavations in Korea in 2014 and was named Mado Shipwreck No. 4. A total of 27 unused whetstones loaded as tribute were discovered on the hull of Mado No. 4, which revealed that Mado Shipwreck No. 4 was a Grain transport ship that sank while carrying tribute from Naju to Hanyang between 1417 and 1425 (King Taejong to King Sejong). All of the 27 whetstones are in the shape of narrow and long sticks. The average values of length, width, thickness, and weight are 161.5 mm, 36.1 mm, 22.7 mm, and 253.2 g, respectively. The result of X-ray diffraction analysis shows that the constituent minerals are quartz, alkali feldspar, and plagioclase, which is similar to that of the high-resolution digital stereomicroscope analysis. The average porosity of Mado-2672 and 2673 is 2.69% and 1.78%, respectively, and the average surface hardness is 807.2HLD and 834.5HLD, respectively. It is interpreted that if the porosity increases beyond a certain level, it affects the decrease in surface hardness. All of these are made of feldspathic sandstones with an average SiO2 content of 74.51% and were confirmed to be suitable as grindstones. They are all medium whetstones when classified based on the SiO2 content. These whetstones are small in size and weight and are convenient to carry, so they are presumed to be a type of non-stationary whetstone, and are estimated to have been mainly used in the fields such as weapon polishing and craft production during the Joseon Dynasty.

The Effect of Chloride Additives and pH on Direct Aqueous Carbonation of Cement Paste (시멘트 풀의 직접수성탄산화에서 Chloride 첨가제와 pH의 영향)

  • Lee, Jinhyun;Hwang, Jinyeon;Lee, Hyomin;Son, Byeongseo;Oh, Jiho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.39-49
    • /
    • 2015
  • Recently, carbon capture and storage (CCS) techniques have been globally studied. This study was conducted to use waste cement powder as an efficient raw material of mineral carbonation for $CO_2$ sequestration. Direct aqueous carbonation experiment was conducted with injecting pure $CO_2$ gas (99.9%) to a reactor containing $200m{\ell}$ reacting solution and the pulverized cement paste (W:C = 6:4) having particle size less than 0.15 mm. The effects of two additives (NaCl, $MgCl_2$) in carbonation were analyzed. The characteristics of carbonate minerals and carbonation process according to the type of additives and pH change were carefully evaluated. pH of reacting solution was gradually decreased with injecting $CO_2$ gas. $Ca^{2+}$ ion concentration in $MgCl_2$ containing solution was continuously decreased. In none $MgCl_2$ solution, however, $Ca^{2+}$ ion concentration was increased again as pH decreased. This is probably due to the dissolution of newly formed carbonate mineral in low pH solution. XRD analysis indicates that calcite is dominant carbonate mineral in none $MgCl_2$ solution whereas aragonite is dominant in $MgCl_2$ containing solution. Unstable vaterite formed in early stage of experiment was transformed to well crystallized calcite with decreasing pH in the absence of $MgCl_2$ additives. In the presence of $MgCl_2$ additives, the content of aragonite was increased with decreasing pH whereas the content of calite was decreased.

A Study on characteristics of planosols in korea -Part I Yeongog series (우리나라에 분포(分布)된 반층토(盤層土)의 특성(特性)에 관(關)한 연구(硏究) -제(第)1보(報) 연용통(延谷統)에 관(關)하여)

  • Um, Ki Tae;Cho, Seong Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.2
    • /
    • pp.45-51
    • /
    • 1975
  • The morphological, physical, chemical, and mineralogical characteristics of planosols in Korea were studied in an effort to establish the suitabilition of the planosols for agricultural development. The Yeongog series which are planosols were established in Korea. Results from the Yeongog series are briefly as follows : 1. Morphologically, the surface soils are brown to dark brown friable loam and subsoils are of varied colors but mainly are dark brown, black and pale brown mottles. The texture of these horizons are silty clay loam with moderate to strong platy structure and clay cutans are on the ped faces. The consistences of these horizons are extremely compact and hard when moist and sticky, plastic when wet. The substrata show varied soil colors and loam to clay loam. 2. Physically, the clay content of the Yeongog soils is highest in the subsoils and gradually decreases below the subsoils. Water holding capacity and bulk desity is higher than in other mineral soils. 3. Chemically, the organic matter content is low and soil reaction ranges from very strongly to strongly acid. The cation exchange capacity is medium and base saturation a high. Active iron, easily reducible manganese and available silicate are high compared with normal soils. 4. In chemical composition of clay fraction of the Yeongog series, sesquioxide ratio, $Fe_2O_3$, $K_2O$ and MgO are high. The cation exchange capacity of the clay fraction is also very high. 5. The clay minerals in Yeongog series are mainly kaoline, vermiculite with Al interlayers and illite. The quarts, primary minerals are in the Yeongog soils. 6. These soils are formed in a warm, humid climate under native grasses on the terraces and rolling or hilly footslopes. In soil classification, the Yeongog soils are classified planosols with claypan. According to 7th approximation system in U.S.A., the Yeongog series are classified as Fragiudalfs because they have an argillic horizon, a hard pan and a high base saturation which is more than 35 percent and classified as Eutric Planosols by FAO/UNESCO classification system.

  • PDF

Transformation of Asbestos-Containing Slate Using Exothermic Reaction Catalysts and Heat Treatment (발열반응 촉매제와 열처리를 이용한 석면함유 슬레이트의 무해화 연구)

  • Yoon, Sungjun;Jeong, Hyeonyi;Park, Byungno;Kim, Yongun;Kim, Hyesu;Park, Jaebong;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.627-635
    • /
    • 2019
  • Cement-asbestos slate is the main asbestos containing material. It is a product made by combining 10~20% of asbestos and cement components. Man- and weathering-induced degradation of the cement-asbestos slates makes them a source of dispersion of asbestos fibres and represents a priority cause of concern. When the asbestos enters the human body, it causes cellular damage or deformation, and is not discharged well in vitro, and has been proven to cause diseases such as lung cancer, asbestos, malignant mesothelioma and pleural thickening. The International Agency for Research on Cancer (IARC) has designated asbestos as a group 1 carcinogen. Currently, most of these slats are disposed in a designated landfill, but the landfill capacity is approaching its limit, and there is a potential risk of exposure to the external environment even if it is land-filled. Therefore, this study aimed to exam the possibility of detoxification of asbestos-containing slate by using exothermic reaction and heat treatment. Cement-asbestos slate from the asbestos removal site was used for this experiment. Exothermic catalysts such as calcium chloride(CaCl2), magnesium chloride(MgCl2), sodium hydroxide(NaOH), sodium silicate(Na2SiO3), kaolin[Al2Si2O5(OH)4)], and talc[Mg3Si4O10(OH)2] were used. Six catalysts were applied to the cement-asbestos slate, respectively and then analyzed using TG-DTA. Based on the TG-DTA results, the heat treatment temperature for cement-asbestos slate transformation was determined at 750℃. XRD, SEM-EDS and TEM-EDS analyses were performed on the samples after the six catalysts applied to the slate and heat-treated at 750℃ for 2 hours. It was confirmed that chrysotile[Mg3Si2O5(OH5)] in the cement-asbestos slate was transformed into forsterite (Mg2SiO4) by catalysts and heat treatment. In addition, the change in the shape of minerals was observed by applying a physical force to the slate and the heat treated slate after coating catalysts. As a result, the chrysotile in the cement-asbestos slate maintained fibrous form, but the cement-asbestos slate after heat treatment of applying catalyst was broken into non-fibrous form. Therefore, this study shows the possibility to safely verify the complete transformation of asbestos minerals in this catalyst- and temperature-induced process.

Two Crystal Structures of Bromine Sorption Complexes of Vacuum Dehydrsted Fully Cd(II) -Exchanged Zeolite A (카드뮴 이온으로 완전히 치환된 제올라이트 A를 진공 탈수한 후 브롬 증기로 흡착한 두개의 결정구조)

  • 고광락;장세복
    • Korean Journal of Crystallography
    • /
    • v.3 no.1
    • /
    • pp.9-22
    • /
    • 1992
  • Two crystal structures of bromine sorption complexes of vacuum dehydrated Cd(ll)-exchanged zeolite A have been determined by single-crystal xray diffraction techniques in the cubic space group Pm3m at 21(1) ℃. Both crystals were ion exchanged in flowing streams of exchange solution In which mole ratio of Cd(NO3)2 and Cd(OOCCH3)B was 1:1 with a total concentration of 0.05 M. First crystal was dehydrated at 450℃ and 2 ×10-6 Torr for two days. Second crystal was dehydrated at 650℃ and 2 ×10-6 Torr for two days. Both crystals were then treated with 160 Torr for two days. Second crystal was dehydrated at 650℃ and 2 × 10-6 Torr for two days. Both crystals were then treated with 160 Torr of zeolitically dried bromine vapor at 24℃. Full-matrix least-squares refinements of toe first crystal(a: 12.250(1) A )· and the second crystal(a: 12.204(2) A ) have contecoed to final error indices, Rl:0.075 and Ra:0.079 with 212 reflections, and Rl : 0.089 and Ra = 0.078 with 128 reflections, respectively, for which I >3σ(I). Crystallographic analyses of both crystals show that six Cd2+ ions are located on two different threefold axes of unit cell associated with 6-ring oxygens. Each 4.5 Cd2+ ion is recessed ca.0. 441 A Into the large cavity to complex either with Brsor with Br3from the (111) plane of 0(3), whereas each 1.5 Cd2+ ions recessed ca. 0.678 A into we sodalite unit. Approximately 1.5 Br5-and 1.5 Br3-ions are sorbed per unit cell. Each Brsion interacts and stabilized by complexing with two Cd2+ ions and framework oxide ions, while each Br3ion interacts with one Cd2+ ion and framework oxide ions. Because of residual water molecules the following reactions may be occurred inside of zeolite cavity:

  • PDF

Cobalt and Nickel Ferrocyanide-Functionalized Magnetic Adsorbents for the Removal of Radioactive Cesium (방사성 세슘 제거를 위한 코발트 혹은 니켈 페로시아나이드가 도입된 자성흡착제)

  • Hwang, Kyu Sun;Park, Chan Woo;Lee, Kune-Woo;Park, So-Jin;Yang, Hee-Man
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.15-26
    • /
    • 2017
  • Cobalt ferrocyanide (CoFC) or nickel ferrocyanide (NiFC) magnetic nanoparticles (MNPs) were fabricated for efficient removal of radioactive cesium, followed by rapid magnetic separation of the absorbent from contaminated water. The $Fe_3O_4$ nanoparticles, synthesized using a co-precipitation method, were coated with succinic acid (SA) to immobilize the Co or Ni ions through metal coordination to carboxyl groups in the SA. CoFC or NiFC was subsequently formed on the surfaces of the MNPs as Co or Ni ions coordinated with the hexacyanoferrate ions. The CoFC-MNPs and NiFC-MNPs possess good saturation magnetization values ($43.2emu{\cdot}g^{-1}$ for the CoFC-MNPs, and $47.7emu{\cdot}g^{-1}$ for the NiFC-MNPs). The fabricated CoFC-MNPs and NiFC-MNPs were characterized by XRD, FT-IR, TEM, and DLS. The adsorption capability of the CoFC-MNPs and NiFC-MNPs in removing cesium ions from water was also investigated. Batch experiments revealed that the maximum adsorption capacity values were $15.63mg{\cdot}g^{-1}$ (CoFC-MNPs) and $12.11mg{\cdot}g^{-1}$ (NiFC-MNPs). Langmuir/Freundlich adsorption isotherm equations were used to fit the experimental data and evaluate the adsorption process. The CoFC-MNPs and NiFC-MNPs exhibited a removal efficiency exceeding 99.09% for radioactive cesium from $^{137}Cs$ solution ($18-21Bq{\cdot}g^{-1}$). The adsorbent selectively adsorbed $^{137}Cs$, even in the presence of competing cations.

Structural and optical properties of TiO2 thin films prepared by Sol-Gel dip coating method (졸-겔 침지코팅법으로 제조된 TiO2 박막의 구조적.광학적 특설)

  • 김동진;이학준;한성홍;김의정
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.197-203
    • /
    • 2002
  • The TiO$_2$ coating solutions were synthesized with different concentrations (T1-0.7N, T2-2.0N) of hydrochloric acid used as catalyst. and TiO$_2$ thin films were prepared by sol-gel dip coating. Their structural and optical properties were examined as a function of calcination temperature. XRD results showed that T1 thin films calcined at 400~80$0^{\circ}C$ had the anatase phase, while those calcined at 100$0^{\circ}C$ had the rutile phase. T2 thin films calcined at 40$0^{\circ}C$ and $600^{\circ}C$ had the anatase phase, with the rutile phase for calcination at 80$0^{\circ}C$. Crystallinity of T2 thin films was superior to that of T1 thin films. The crystallite size of TiO$_2$ thin films increased with increasing calcination temperature, and the crystallite size of anatase phase in T2 thin films was larger than that in T1 thin films, but the crystallite size of rutile phase in T2 thin films was smaller. The surface morphology of the films showed that the films were formed more densely in the rutile phase than in the anatase phase, this phenomenon appeared conspicuously in T2 thin films. The transmittance of the samples with thin films on quartz glass calcined at 100$0^{\circ}C$ was significantly reduced at wavelength range about 300-700 nm due to the increased absorption originating from the change of crystallite phase and composition of the films and the scattering effect originating from increasing crystallite size. The refractive index of TiO$_2$ thin films increased, and hence the film thickness as well as the porosity of TiO$_2$ thin films decreased with increasing calcination temperature. Furthermore, the refractive index of T2 thin films was higher than T1 thin films, and porosity of T2 films was lower.