DOI QR코드

DOI QR Code

The Effect of Chloride Additives and pH on Direct Aqueous Carbonation of Cement Paste

시멘트 풀의 직접수성탄산화에서 Chloride 첨가제와 pH의 영향

  • Lee, Jinhyun (Department of Geological Sciences, Pusan National University) ;
  • Hwang, Jinyeon (Department of Geological Sciences, Pusan National University) ;
  • Lee, Hyomin (Department of Geological Sciences, Pusan National University) ;
  • Son, Byeongseo (Department of Geological Sciences, Pusan National University) ;
  • Oh, Jiho (Department of Geological Sciences, Pusan National University)
  • 이진현 (부산대학교 지질환경과학과) ;
  • 황진연 (부산대학교 지질환경과학과) ;
  • 이효민 (부산대학교 지질환경과학과) ;
  • 손병서 (부산대학교 지질환경과학과) ;
  • 오지호 (부산대학교 지질환경과학과)
  • Received : 2015.02.27
  • Accepted : 2015.03.20
  • Published : 2015.03.31

Abstract

Recently, carbon capture and storage (CCS) techniques have been globally studied. This study was conducted to use waste cement powder as an efficient raw material of mineral carbonation for $CO_2$ sequestration. Direct aqueous carbonation experiment was conducted with injecting pure $CO_2$ gas (99.9%) to a reactor containing $200m{\ell}$ reacting solution and the pulverized cement paste (W:C = 6:4) having particle size less than 0.15 mm. The effects of two additives (NaCl, $MgCl_2$) in carbonation were analyzed. The characteristics of carbonate minerals and carbonation process according to the type of additives and pH change were carefully evaluated. pH of reacting solution was gradually decreased with injecting $CO_2$ gas. $Ca^{2+}$ ion concentration in $MgCl_2$ containing solution was continuously decreased. In none $MgCl_2$ solution, however, $Ca^{2+}$ ion concentration was increased again as pH decreased. This is probably due to the dissolution of newly formed carbonate mineral in low pH solution. XRD analysis indicates that calcite is dominant carbonate mineral in none $MgCl_2$ solution whereas aragonite is dominant in $MgCl_2$ containing solution. Unstable vaterite formed in early stage of experiment was transformed to well crystallized calcite with decreasing pH in the absence of $MgCl_2$ additives. In the presence of $MgCl_2$ additives, the content of aragonite was increased with decreasing pH whereas the content of calite was decreased.

최근 세계적으로 탄소포집 및 저장(CCS, carbon capture and storage)기술에 대한 연구가 많이 수행되고 있다. 이번 연구는 폐시멘트 미분을 이산화탄소를 포집하는 광물탄산화(mineral carbonation)의 효율적인 재료로 활용하기 위한 연구의 일환으로 수행하였다. 0.15 mm 미만으로 체가름된 시멘트 풀(W:C = 6:4)과 $200m{\ell}$ 용액을 포함하는 반응용기에 순도 99%의 $CO_2$ 가스를 주입하는 직접수성탄산화 실험을 수행하고, 두 종류 첨가제(NaCl, $MgCl_2$)의 탄산화에의 영향을 분석하였다. 특히, 첨가제의 종류와 pH변화에 따른 탄산화 과정, 생성되는 탄산염광물의 종류와 특성에 대하여 자세히 연구하였다. 직접수성탄산화 실험 결과 pH는 $CO_2$의 주입으로 지속적으로 감소하였다. $Ca^{2+}$ 이온 농도는 $MgCl_2$가 첨가제로 활용한 경우에는 지속적으로 감소하였지만 $MgCl_2$를 첨가하지 않은 경우에는 감소하다가 pH가 낮아짐에 따라 생성된 탄산염광물의 용해로 다시 증가하는 경향을 보였다. 생성물질에 대한 X-선 회절분석 결과, $MgCl_2$를 첨가하지 않은 경우에는 방해석이 우세하게 나타났고, $MgCl_2$를 첨가제로 활용한 경우에는 $Mg^{2+}$ 이온의 영향으로 아라고나이트가 우세하게 나타났다. 또한 pH 단계별 직접수성탄산화 실험결과, $MgCl_2$를 첨가하지 않은 경우에는 pH가 높은 실험 초기에 나타난 바테라이트는 pH가 낮아질수록 결정도가 좋은 방해석으로 전환되는 것을 확인하였고, $MgCl_2$를 첨가제로 활용한 경우에는 pH가 낮아질수록 방해석의 함량은 감소하고 아라고나이트의 함량이 증가하는 것을 알 수 있었다.

Keywords

References

  1. Bobicki, E.R., Liu, Q., Xu, Z., and Zeng, H. (2012) Carbon capture and storage using alkaline industrial wastes. Progress in Energy and Combustion Science, 38(2): 302-320.
  2. Chae, S.C., Jang, Y.N., and Woo, K.W. (2009) Mineral Carbonation as a sequestration method of $CO_2$. Journal of the Geological Society of Korea, 45, 527-555 (in Korean with English abstract).
  3. Choi, Y.H., Hwang, J.Y., Lee, H.M., Oh, J.H., and Lee, J.H. (2014) Studies for $CO_2$ sequestration using cement paste and formation of carbonate minerals. J. Miner. Soc. Korea, 27(1), 17-30 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2014.27.1.17
  4. Huijgen, W.J.J. and Comans, R.N.J. (2005) Mineral $CO_2$ sequestration by carbonation of industrial residues; Literature overview and selection of residue. ECN-C--05-074, Energt research Centre of The Netherlands, Pettem, The Netherlands.
  5. Iizuka, A., Fujii, M., Yamasaki, A., and Yanagisawa, Y. (2004) Development of a new $CO_2$ sequestration process utilizing the cabonation of waste cement. Industrial Engineering Chemical Research, 43, 7880-7887. https://doi.org/10.1021/ie0496176
  6. IPCC (2005) IPCC special report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New york, NY, USA, 442pp.
  7. Katsuyama, Y., Yamasaki, A., Iizuka, A., Fujii, M., Kumagai, K., and Yanagisawa, Y. (2005) Development of a process for producing high-purity calcium carbonate ($CaCO_3$) from waste cement using pressurized $CO_2$. Environmental progress. 24, 162-170. https://doi.org/10.1002/ep.10080
  8. Ko, S.J. (2006) Effects of magnesium chloride on the synthesis of aragonite precipitated calcium carbonate. Master thesis, Kwangwoon University, Seoul (in Korean with English abstract).
  9. Krauskopf, B.K. (1979) Introduction to geochemistry, 2nd ed., McGraw-Hill, Inc., 617.
  10. Lee, H.M., Hwang, J.Y., and J, C.S. (2003) Concerete Deterioration Near Coastal Area and Characteristics of Associated Secondary Mineral Formation. Econ. Environ. Geol, 36, 365-374 (in Korean with English abstract).
  11. Lee, H.M., Hwang, J.Y., Choi, Y.H., Oh, J.H., and Lee, J.H. (2013) A study of the effective application method of direct-aqueous carbonation for $CO_2$ sequestration of waste concrete. Proceeding of joint Annual Conference, Mineralogical Society of Korea and Petrological Society of Korea, Daejeon, May 23-24, 69p (in Korean with English abstract).
  12. Maciejewski, M., Oswald, H.R., and Reller, A. (1994) Thermal transformation of vaterite and calcite. Thermochimica Acta, Vol. 234, pp. 315-328. https://doi.org/10.1016/0040-6031(94)85155-7
  13. Nancollas, G.H. and Sawada, K. (1982) Formation of scales of calcium carbonate polymorphs : The influence of magnesium ion and inhibitors. Society of Petroleum Engineers of AIME, pp. 645-652.
  14. Ota, Y., Inui, S., Iwashita, T., and Abe, Y. (1995) Preparation of aragonite whiskers. Journal of the American Ceramic Society, Vol. 78-7, pp. 1983-1984.
  15. Sipila, J., Teir, S., and Zevenhoven, R. (2008) Carbon dioxide sequestration by mineral carbonation; Literature review update 2005-2007. Repory VT2008-1, Abo akademi university.
  16. Uliasz-Bochenczyk, A. (2007) Waste used for $CO_2$ bonding via mineral carbonation. Gospodarka Surowcami Mineralnymi, 23, 121-128.
  17. Wada, N., Yamashita, K., and Umegaki, T. (1995) Effects of divalent cations upon nucleation, growth and transformation of calcium carbonate polymorphs under conditions of double diffusion. Journal of Crystal Growth, 498, 297-304.
  18. Wray, J.L. and Daniels, F. (1957) Precipitation of calcite and aragonite. Journal of the American Chemical Society, Vol. 79, pp. 2031-2034. https://doi.org/10.1021/ja01566a001

Cited by

  1. Synthesis and Characterization of Calcium Derivative Combined with High-Surface-Area Activated Carbon Composites for Fine Toxic Gas Removal vol.55, pp.5, 2018, https://doi.org/10.4191/kcers.2018.55.5.02
  2. Carbonation of Circulating Fluidized Bed Combustion Fly Ash with Hybrid Reaction vol.55, pp.2, 2018, https://doi.org/10.4191/kcers.2018.55.2.07