• 제목/요약/키워드: Wood frame

검색결과 142건 처리시간 0.029초

Evaluation of the Partial Compressive Strength according to the Wood Grain Direction

  • Park, Chun-Young;Kim, Hyung-Kun;Lee, Jun-Jae;Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권2호
    • /
    • pp.100-104
    • /
    • 2013
  • Bearing occurs by the rotations of members induced from horizontal or vertical load at traditional wooden joint in frame. The bearing between wooden members is not occurring at the whole surface of joint, but occurring only at the particular bearing area. In this study, partial bearing according to the different grain direction was evaluated. The partial compressive strength showed 3 times higher than pure compressive strength perpendicular to grain, 1.5 times higher than parallel to grain and 3.3 times higher than both of them. It is expected that this result can be very importantly applied when evaluating and analyzing the actual behavior of traditional wooden mortise and tenon joint.

나선형 철선못 접합부의 항복내력 및 강성 예측 (Estimation of Yield strength and Slip Modulus for Helically Threaded Nail Connection)

  • 황권환;심국보
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권6호
    • /
    • pp.524-530
    • /
    • 2009
  • 기둥-보 구조와 경골목구조가 혼합된 공법은 경골목구조가 심벽 또는 평벽 요소로써 구조내력성능의 대부분을 차지하고 있다. 경골목구조의 수평전단내력성능은 면재에 대한 못접합부의 전단성능으로부터 예측할 수 있으며, 못접합부는 못의 휨내력성능을 이용하여 예측할 수 있다. 못접합에 의한 내력벽의 항복내력과 벽체 강성을 예측하기 위한 기초 연구로써 못의 휨내력성능을 이용한 못접합부의 항복내력 및 접합계수(초기강성)를 검토하였다. 못접합부 내력성능 예측에는 각각의 주부재에 대해 일반 지압내력 및 지압강성을 이용하고, 파스너인 나선형 철선못의 휨시험에 의한 휨항복내력성능을 이용하였다. 홈가공부의 지름에 의한 항복내력은 예측 정밀성이 우수하였으나, 접합계수는 낮게 예측되었다. 그 원인으로 주부재에서는 비중의 영향, 측면부재에서는 못머리지름에 의한 인발, 접합부에서는 못머리부의 지압 및 모멘트저항 등이 영향을 끼침을 알 수 있었으며, 이에 대한 차후 검토가 요구된다.

Calculation of Carbon Stocks on Korean Traditional House (Hanoks) in Korea

  • ;강석구
    • 한국가구학회지
    • /
    • 제29권1호
    • /
    • pp.40-48
    • /
    • 2018
  • This study analyzes the contribution of hanok that construction in reducing greenhouse gas (GHG) emissions in Korea by calculating the carbon storage of hanoks and comparing it to different housing types in Korea. The hanok is a traditional Korean house. And it were first designed and built in the $14^{th}$ century during thd Joseon Dynasty. According to our results, the number of hanoks in 2016 was approximately 547,085 which was accounting for 7.8% of the total construction market, This study found Gyeongbuk with 95,083, Jeonnam with 88,981, Gyeongnam with 76,388 and Seoul with 43,519 hanoks. According to the GHG Inventory Report for 2016, Korea's total annual GHG emissions amounted to 650 million $tCO_2$, with the carbon stocks in hanoks amounting to 19.2 million $tCO_2$. This accounts for 2.8% of Korea's total GHG emissions and 46.1% of the carbon absorbed by forests. Our results show that hanoks store four times more carbon than light-frame-wood-houses, and 15 times more carbon than concrete-reinforced and steel-frame houses. The main factors causing the hanok industry slowdown are the high construction costs, lack of government support, and insufficient knowledge of hanok architecture. Therefore, to further increase the carbon stock of hanok, more research is needed to improve the technical use of wood and reduce construction of the hanok and prepare legal and institutional arrangements related to hanok industry.

  • PDF

Modeling wind load paths and sharing in a wood-frame building

  • He, Jing;Pan, Fang;Cai, C.S.
    • Wind and Structures
    • /
    • 제29권3호
    • /
    • pp.177-194
    • /
    • 2019
  • While establishing adequate load paths in the light-frame wood structures is critical to maintain the overall structural integrity and avoid significant damage under extreme wind events, the understanding of the load paths is limited by the high redundant nature of this building type. The objective of the current study is to evaluate the system effects and investigate the load paths in the wood structures especially the older buildings for a better performance assessment of the existing building stock under high winds, which will provide guidance for building constructions in the future. This is done by developing building models with configurations that are suspicious to induce failure per post damage reconnaissance. The effect of each configuration to the structural integrity is evaluated by the first failure wind speed, amajor indicator beyond the linear to the nonlinear range. A 3D finite-element (FE) building model is adopted as a control case that is modeled using a validated methodology in a highly-detailed fashion where the nonlinearity of connections is explicitly simulated. This model is then altered systematically to analyze the effects of configuration variations in the model such as the gable end sheathing continuity and the gable end truss stiffness, etc. The resolution of the wind loads from scaled wind tunnel tests is also discussed by comparing the effects to wind loads derived from large-scale wind tests.

Analysis of Airtightness and Air Leakage of Wooden Houses in Korea

  • Kim, Sejong;Chang, Yoon-Seong;Park, Joo-Saeng;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권6호
    • /
    • pp.828-835
    • /
    • 2017
  • Airtightness of buildings is one of critical aspects of its energy performance. To build up references of airtightness of wooden houses built in Korea, blower door tests have been carried out in 42 houses since 2006. Causes of air leakage were investigated recently. The average value of air change rate was $3.7h^{-1}$ for light frame house and $5.5h^{-1}$ for post-beam construction at ACH50 (air change per hour at 50 Pa air pressure difference). Foam type insulation was more advantageous in ensuring building airtightness than glass fiber batt. Airtightness of wooden houses which were constructed after 2010 was improved to have less than $1.5h^{-1}$ of ACH50, threshold for application of artificial air change. The average air change rate of CLT (cross laminated timber) houses showed the lowest value, $1.1h^{-1}$, among the tested structures.

경골목조주택의 벽체-바닥체 못결합부의 감쇠비에 관한 연구 (Studies on Damping Ratio of Nailed Joint Connecting Wall to Floor in Light Frame House)

  • 김광모;이전제
    • Journal of the Korean Wood Science and Technology
    • /
    • 제24권3호
    • /
    • pp.65-71
    • /
    • 1996
  • In the design of wood structures, the consideration of the dynamic load effect has been increased. Generally, damping ratio is presented as the method of considering dynamic load effect. So, the relationship between joint type and damping ratio was investigated. It has been known that the joint extremely damp the dynamic load in wood structures. Static test was performed to determine the effects of nail size and friction area on joint strength and stiffness. Joint strength and stiffness were increased with nail size. However, the static properties of joint was not affected by friction area. Cyclic test was performed to determine the effects of nail size, friction area and load magnitude on damping ratio, Damping ratio was affected by all factors. Increasing the width of the bottom plate was suggested as the most adequate method to increase the damping ratio without the reduction of the static properties of the structures.

  • PDF

Tree-Ring Dating of Coffin Woods Excavated from Shinnae-dong in Seoul, Korea

  • Lee, Kwang-Hee;Son, Byung-Hwa;Park, Won-Kyu
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권5호
    • /
    • pp.406-414
    • /
    • 2013
  • This study aims to date wooden coffins excavated from graves in Shinnae-dong, Seoul, South Korea, using dendrochronology. The species of woods used to make the coffins were identified as Pinus densiflora S. et Z., one of the major conifers in Korea. Of 12 graves, 10 were successfully dated using various red-pine chronologies of South Korea. Due to the absence of the last-formed tree ring before felling, the number of sapwood rings, used to obtain likely cutting dates, had to be estimated. The terminus post quem for two coffins without plaster frames were AD 1548 and AD 1571, respectively. Eight coffins with plaster frames yielded estimated dates from AD 1664 to AD 1799. The tree-ring dates indicated that the coffins with plaster frames in Shinnae-dong were constructed approximately 100 years later than those without plaster frames.

Hygroscopic Properties of Light-Frame Wall with Different Assemblies

  • Kim, Se-Jong;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제34권2호
    • /
    • pp.22-29
    • /
    • 2006
  • On purpose to reduce accumulated moisture and to prevent moisture condensation in a light-frame wall, thermal characteristics and moisture behaviors were investigated for four different wall assemblies; a) typical wall, b) addition of vapor retarder between the insulation and the gypsum board, c) addition of air gap for natural ventilation behind the siding, d) composition with b) and c). Each wall was tested under two climate conditions; 1) $20^{\circ}C$, 50% RH (indoor) and $30^{\circ}C$, 85% RH (outdoor), 2) $30^{\circ}C$, 85% RH (indoor) and $20^{\circ}C$, 50% RH (outdoor).The results showed that the typical wall assembly had poor resistance against moisture intrusion from the inside of building. Outdoor and indoor humidity caused the moisture condensations on the inside of the siding and the back surface of the sheathing respectively. The addition of a vapor retarder did not give significant improvement in preventing the moisture intrusion.

인삼재배 해가림시설의 기상재해와 구조개선대책 (Structural Improvement of the Shading Structures against Meteorological Disasters in Ginseng Fields)

  • 남상운
    • 한국농공학회지
    • /
    • 제45권4호
    • /
    • pp.98-106
    • /
    • 2003
  • In order to set up structural improvement strategy against meteorological disasters of the shading structures in ginseng fields, structural safety analyses as well as some case studies of structural damage patterns were carried out. According to the results of structural safety analysis, allowable safe snow depth for type B(wood frame with single span) was 25.9 cm, and those for type A(wood frame with multi span) and type C and D (steel frame with multi span) were 17.6 cm, 25.8 cm, and 20.0 cm respectively. So types of shading structures should be selected according to the regional design snow depth. An experiential example study on meteorological disasters indicated that a strong wind damage was experienced once every 20 years, and a heavy snow damage once every 9.5 years. The most serious disasters were caused by heavy snow and it was found that a half break and complete collapse of structures were experienced by about 70% of snow damage. In addition to maintenance, repair and reinforcement, it is also recommended that improved model of shading structures for ginseng cultivation should be developed as a long term countermeasures against meteorological disasters.

건물화재시 창문재료에 따른 내화특성 연구 (A Study on the Characteristics of Fire Resistance of Window Material in Compartment Fire)

  • 허만성;장문석;조수
    • 한국화재소방학회논문지
    • /
    • 제17권1호
    • /
    • pp.62-67
    • /
    • 2003
  • 실제 건물화재에서 창문재료의 내화특성을 평가하기 위하여 건물화재실험이 수행되었다. 4 mx3.8mx2.4m 방에서 PVC 창문, 알루미늄 창문, AL+Wood 창문을 각각 설치하고 화원은 소파와 매트리스를 사용하였다. 창문은 아파트 베란다에 많이 사용하는 유리두께 6mm사이에 공기층 12 mm인 것을 사용하였다. 건물내부와 창문 주변의 온도분포를 살펴보기 위하여 총 32개 지점의 온도를 측정하였다. 실험결과 건물내의 온도분포, 창틀의 변화, 유리창의 파손 정도 둥을 조사하여 분석하였다.