• Title/Summary/Keyword: Winding Process

Search Result 211, Processing Time 0.025 seconds

Design of Gate Driver Chip for Ionizer Modules with Fault Detection Function (Fault Detection 기능을 갖는 이오나이저 모듈용 게이트 구동 칩 설계)

  • Jin, Hongzhou;Ha, PanBong;Kim, YoungHee
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.132-139
    • /
    • 2020
  • The ionizer module used in this air cleaner supplies high voltages of 3.5KV / -4KV to the discharge electrode HV+ / HV- using a winding transformer to generate positive and negative ions by electric field radiation of carbon fiber brush. The ionizer module circuit using the existing MCU has the disadvantage of large PCB size and expensive price, and the gate driver chip using the existing ring oscillator has oscillation period sensitive to PVT (Process-Voltage-Temperature) fluctuation and there is risk of fire or electric shock because there is no fault detection function by short circuit of HV+ and GND as well as HV- and GND. Therefore, in this paper, even though PVT fluctuates, by using 7-bit binary up counter, HV+ voltage reaches the target voltage by adjusting oscillation period. And an HV+ short fault detection circuit for detecting a short circuit between HV+ and GND, an HV- short fault detection circuit for detecting a short circuit between HV- and GND, and an OVP (Over-Voltage Protection) for detecting that HV+ rises above an overvoltage are newly proposed.

A study of decomposition of sulfur oxides(harmful gas) using calcium dihydroxide catalyst by plasma reactions (Ca(OH)2촉매를 이용한 플라즈마 반응에 의한 황산화물(유해가스)의 제거에 관한 연구)

  • Kim, Dayoung;Hwang, Myungwhan;Woo, Insung
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.2
    • /
    • pp.237-246
    • /
    • 2014
  • Researches on the elimination of sulfur and nitrogen oxides with catalysts and absorbents reported many problems related with elimination efficiency and complex devices. In this study, decomposition efficiency of harmful gases was investigated. It was found that the efficiency rate can be increased by moving the harmful gases together with SPCP reactor and the catalysis reactor. Calcium hydroxide($Ca(OH)_2$), CaO, and $TiO_2$ were used as catalysts. Harmful air polluting gases such as $SO_2$ were measured for the analysis of decomposition efficiency, power consumption, and voltage according to changes to the process variables including frequency, concentration, electrode material, thickness of electrode, number of electrode winding, and additives to obtain optimal process conditions and the highest decomposition efficiency. The standard sample was sulfur oxide($SO_2$). Harmful gases were eliminated by moving them through the plasma generated in the SPCP reactor and the $Ca(OH)_2$ catalysis reactor. The elimination rate and products were analyzed with the gas analyzer (Ecom-AC,Germany), FT-IR(Nicolet, Magna-IR560), and GC-(Shimazu). The results of the experiment conducted to decompose and eliminate the harmful gas $SO_2$ with the $Ca(OH)_2$ catalysis reactor and SPCP reactor show 96% decomposition efficiency at the frequency of 10 kHz. The conductivity of the standard gas increased at the frequencies higher than 20 kHz. There was a partial flow of current along the surface. As a result, the decomposition efficiency decreased. The decomposition efficiency of harmful gas $SO_2$ by the $Ca(OH)_2$ catalysis reactor and SPCP reactor was 96.0% under 300 ppm concentration, 10 kHz frequency, and decomposition power of 20 W. It was 4% higher than the application of the SPCP reactor alone. The highest decomposition efficiency, 98.0% was achieved at the concentration of 100 ppm.

Finite Element Analysis on the Strength Safety of a Fuel Tank for Highly Compressed Gas Vehicle (초고압가스 차량용 연료탱크의 강도안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.29-33
    • /
    • 2009
  • In this study, the strength safety of a composite fuel tank which is fabricated by an aluminum liner of Al6061-T6 materials and composite layers of carbon/epoxy-glass/epoxy composites has been analyzed by using a finite element analysis technique. In order to enhance the durability of the composite fuel tank, an autofrettage process was used and compressed natural gas was supplied to the prestressed fuel tank. The FEM computed results on the stress safety of autofrettaged gas tanks were compared with a criterion of design safety of US DOT-CFFC and Korean Standard. The FEM computed results indicated that the stress safety of autofrettaged fuels tanks shows instability at the dome zone and uniform stability at the parallel body, which provide an evaluation data for a strength safety of autofrettaged composite fuel tanks. The computed results show that the stress safety of 9.2 liter composite fuel tanks satisfied the safety criteria of four evaluation items, which are provided by US DOT-CFFC and KS and indicated a safe design.

  • PDF

Estimation of Motor Deterioration using Pulse Signal and Insulation Resistance Measurement Algorithm (펄스 신호 및 절연저항 측정 알고리즘을 이용한 전동기 열화 추정)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.111-116
    • /
    • 2022
  • The causes of motor burnout include overload, phase loss, restraint, interlayer short circuit, winding ground fault, instantaneous overvoltage, and the rotor contacting the stator, leading to insulation breakdown, leading to breakdown or electrical accidents. Therefore, equipment failure causes not only loss due to cost required for equipment maintenance/repair, but also huge economic loss due to productivity decrease due to process stop because the process itself including the motor is stopped. The current level of technology for diagnosing motor failures uses vibration, heat, and power analysis methods, but there is a limit to analyzing the problems only after a considerable amount of time has passed according to the failure. Therefore, in this paper, a device and algorithm for measuring insulation resistance using DC AMP signal was applied to an industrial motor to solve this problem. And by following the insulation resistance state value, we propose a diagnosis of deterioration and failure of the motor that cannot be solved by the existing method.

Fabrication of 250 m class Bi-2223/Ag HTS Tapes (250 m 급 Bi-2223/Ag 고온 초전도선재 제조)

  • Ha, H.S.;Oh, S.S.;Ha, D.W.;Jang, H.M.;Kim, S.C.;Song, K.J.;Park, C.;Kwon, Y.K.;Ryu, K.S.
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.130-133
    • /
    • 2001
  • A multifilamentary Bi-2223 HTS tape for superconducting power applications was studied through the fabrication of 250-meter long tapes by the PIT(powder in tube) process. To fabricate continuous long wire, a drawing machine, a two-drum bull block and a rolled tape winding machine were developed. Especially, 250-meter long tapes were heat treated in the shape of pancake coil to reduce the heat affect zone and to achieve the high critical current. Engineering critical current density was improved through both the enhancements of critical current density by control of thermal process and the increase of filling factor by using thin Ag alloy sheath tubes less than 1.5 mm in thickness. We have made successfully 250-meter long 37 filamentary tapes with high filling factor up to 31 % employing the modified drawing and rolling technique. The critical current of 250-meter long tapes with pancake coil type was measured by transport method at self-field up to 250 gauss of center field. The measured values, based on the transport critical current at self-field, $I_{c}$ -B characteristics and magnetic field analysis, are 34 A of I$_{c}$ and 4.0 $kA/\textrm{cm}^2$ of $J_{e}$ at 250 m, 77 K, and 0 T. We also have achieved the 56 A of I$_{c}$ and 7.0 $0 kA/\textrm{cm}^2$ of$ J_{e}$ in short tapes at 77K, self-field, and 1$mutextrm{V}$/cm.

  • PDF

The Process of Establishing a Japanese-style Garden and Embodying Identity in Modern Japan (일본 근대 시기 일본풍 정원의 확립과정과 정체성 구현)

  • An, Joon-Young;Jun, Da-Seul
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.3
    • /
    • pp.59-66
    • /
    • 2023
  • This study attempts to examine the process of establishing a Japanese-style garden in the modern period through the perspectives of garden designers, spatial composition, spatial components, and materials used in their works, and to use it as data for embodying the identity of Korean garden. The results are as follows: First, by incorporating elements associated with Koreanness into the modern garden culture, there are differences in location, presence, and subjectivity when compared to Japan. This reflects Japan's relatively seamless cultural continuity compared to Korea's cultural disconnection during the modern period. Second, prior to the modern period, Japan's garden culture spread and continued to develop throughout the country without significant interruptions. However, during the modern period, the Meiji government promoted the policy of 'civilization and enlightenment (Bunmei-kaika, 文明開化)' and introduced advanced European and American civilizations, leading to the popularity of Western-style architectural techniques. Unfortunately, the rapid introduction of Western culture caused the traditional Japanese culture to be overshadowed. In 1879, British architect Josiah Condor guided Japanese architects and introduced atelier and traditional designs of Japanese gardens into the design. The garden style of Ogawa Jihei VII, a garden designer in Kyoto during the Meiji and Taisho periods, was accepted by influential political and business leaders who sought to preserve Japan's traditional culture. And a protection system of garden was established through the preparation of various laws and regulations. Third, as a comprehensive analysis of Japanese modern gardens, the examination of garden designers, Japanese components, materials, elements, and the Japanese-style showed that Yamagata Aritomo, Ogawa Jihei VII, and Mirei Shigemori were representative garden designers who preserved the Japanese-style in their gardens. They introduced features such as the creation of a Daejicheon(大池泉) garden, which involves a large pond on a spacious land, as well as the naturalistic borrowed scenery method and water flow. Key components of Japanese-style gardens include the use of turf, winding garden paths, and the variation of plant species. Fourth, an analysis of the Japanese-style elements in the target sites revealed that the use of flowing water had the highest occurrence at 47.06% among the individual elements of spatial composition. Daejicheon and naturalistic borrowed scenery were also shown. The use of turf and winding paths were at 65.88% and 78.82%, respectively. The alteration of tree species was relatively less common at 28.24% compared to the application of turf or winding paths. Fifth, it is essential to discover more gardens from the modern period and meticulously document the creators or owners of the gardens, the spatial composition, spatial components, and materials used. This information will be invaluable in uncovering the identity of our own gardens. This study was conducted based on the analysis of the process of establishing the Japanese-style during Japan's modern period, utilizing examples of garden designers and gardens. While this study has limitations, such as the absence of in-depth research and more case studies or specific techniques, it sets the stage for future exploration.

A Design of Integrated Circuit for High Efficiency current mode boost DC-DC converter (고효율 전류모드 승압형 DC-DC 컨버터용 집적회로의 설계)

  • Lee, Jun-Sung
    • 전자공학회논문지 IE
    • /
    • v.47 no.2
    • /
    • pp.13-20
    • /
    • 2010
  • This paper describes a current mode PWM DC-DC converter IC for battery charger and supply power converter for portable electronic devices. The maximum supply voltage of IC is 40[V] and 2.8[V]~330[V] DC input power is converted to higher or programmed DC voltage according to external resistor ratio or wire winding ratio of transformer. The maximum supply output current is 3[A] over and voltage error of output node is within 3[%]. The whole circuit needed current mode PWM DC-DC converter circuit is designed. The package dimensions and number of external parts are minimized in order to get a smaller hardware size. The power consumption is smaller then 1[mW] at stand by period with supply voltage of 3.6[V] and maximum energy conversion efficiency is about 86[%]. This device has been designed in a 0.6[um] double poly, double metal 40[V] CMOS process and whole chip size is 2100*2000 [um2].

Acoustic Emission Source Location in Filament Wound CFRP Pressure Vessel (필라멘트 와인딩으로 저작된 복합재 압력용기에서 탄성파 발생원의 위치표정)

  • Kim, Jeong-Kon;Won, Yong-Gu;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.439-444
    • /
    • 2003
  • Acoustic emission(AE) ran be very effectively applied to locate the damaged area in large structures by detecting the elastic waves generated during the damage process within solids. Source location in the composite structures has been, however, extremely difficult due to the acoustic anisotropy with the velocity dependence on fiber orientations. In this study, it has been shown that a newly proposed method for 2-D source location of anisotropic structures is practically applicable to the real structure. The method employes wave velocities obtained with different velocities from $0^{\circ}\;to\;90^{\circ}$ for a filament wound composite pressure vessel under the air-filled and the water-filled conditions.

A Study on Post-formal Spatial Expression in 21 st Century Fashion Design (21세기 패션디자인에 나타난 탈정형적 공간 표현에 관한 연구)

  • Yang, Hee-Young;Kim, So-Young
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.8
    • /
    • pp.91-105
    • /
    • 2008
  • Spatial multiplication phenomenon, expressed through de-constructive trend since the late of 20C, have got changed existing fixed and dis-variable space to smooth, fluid, and changeable space. Ex-form and fluidity of new spatial paradigm have been focused through lots of scientific theories studied between digital thought and indeterminacy and rankless nature phenomena. In 21C fashion, indeterminate and irregular form and space have been crested continuously, which could not explain simply according as the fluidity theory Different from the space crested for multi-function and multipurpose, this is revealed the characteristics of chaosmos that communizes the order and the disorder, deconstruction and creation. Ex-formal space of fashion have shown the relationship of de-centerizing, de-territorial, and do-structural phenomenon among different fashion elements. This paper intends to understand the concept of ex-form, and study expressive manners of ex-formal space of 21C fashion, and conclusion as follows. 1) Overlap changes single space of fashion to multi-layered space through the repeat system of pleats, origami, and folding. 2) Ex-gravity expressed in deviation of the gravity acting vertical direction, for example, twisting, curve, winding, portion. 3) Morphing is shown the change process from single fixed form to different complex form. 4) Blurring is expressed in re-combination and re-arrangement among elements of fashion. 5) Blob shows hybrid fashion space through the liberal compounding and separation of a lot of different elements.

The Analysis of Quench Protection System through Thermo-Electrodynamics of Resistive Transition in SC Magnet (초전도자석내의 국부적 상변이에 대한 열적.전기역학적 해석 및 퀜치보호시스템의 설계 및 특성해석)

  • Chu, Y.;Bae, J.H.;Kim, H.M.;Jang, M.H.;Joo, M.S.;Ko, T.K.;Kim, K.M.;Jeong, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.86-88
    • /
    • 1997
  • The detection of the normal zones in the coil winding and the initiation of the proper dump sequence have been one of the most important areas in the superconducting magnet technology. In this paper, the process to derive optimal dump sequence has been investigated through quench simulation and analysis of magnetically coupled superconducting magnet system. The magnet terminal voltage and maximum temperature rise in the quench initiated point are calculated with respect to various input variables such as operation current, dump resistance, etc. The experimental system is comprised of sc solenoidal coil, data aquisition device, external circuit breakers and dump resistor. The quench behavior of the magnet(e.g., temperature profile and the voltage signal) was measured. From this results, theoretical predictions were found to coincide with the experimental observations.

  • PDF