• Title/Summary/Keyword: Wilt

Search Result 662, Processing Time 0.032 seconds

Analysis of Genetic and Pathogenic Diversity of Ralstonia solanacearum Causing Potato Bacterial Wilt in Korea

  • Cho, Heejung;Song, Eun-Sung;Lee, Young Kee;Lee, Seungdon;Lee, Seon-Woo;Jo, Ara;Lee, Byoung-Moo;Kim, Jeong-Gu;Hwang, Ingyu
    • The Plant Pathology Journal
    • /
    • v.34 no.1
    • /
    • pp.23-34
    • /
    • 2018
  • The Ralstonia solanacearum species complex (RSSC) can be divided into four phylotypes, and includes phenotypically diverse bacterial strains that cause bacterial wilt on various host plants. This study used 93 RSSC isolates responsible for potato bacterial wilt in Korea, and investigated their phylogenetic relatedness based on the analysis of phylotype, biovar, and host range. Of the 93 isolates, twenty-two were identified as biovar 2, eight as biovar 3, and sixty-three as biovar 4. Applied to the phylotype scheme, biovar 3 and 4 isolates belonged to phylotype I, and biovar 2 isolates belonged to phylotype IV. This classification was consistent with phylogenetic trees based on 16S rRNA and egl gene sequences, in which biovar 3 and 4 isolates clustered to phylotype I, and biovar 2 isolates clustered to phylotype IV. Korean biovar 2 isolates were distinct from biovar 3 and 4 isolates pathologically as well as genetically - all biovar 2 isolates were nonpathogenic to peppers. Additionally, in host-determining assays, we found uncommon strains among biovar 2 of phylotype IV, which were the tomato-nonpathogenic strains. Since tomatoes are known to be highly susceptible to RSSC, to the best of our knowledge this is the first report of tomato-nonpathogenic potato strains. These results imply the potential prevalence of greater RSSC diversity in terms of host range than would be predicted based on phylogenetic analysis.

Development of an Aerial Precision Forecasting Techniques for the Pine Wilt Disease Damaged Area Based on GIS and GPS (GIS와 GPS를 이용한 소나무재선충병 피해지 항공정밀예찰 기법 개발)

  • Kim, Joon-Bum;Kim, Dong-Yun;Park, Nam-Chang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2010
  • The spatial distribution characteristics of damaged trees by the pine wilt disease appear scattered spots spreading from single dead trees. That is the reason why it is difficult to early detect damage and to prevent from extensive damage. Thus, it is very important to forecast and analyze the damage occurrences, to establish strategies for prevention, and to supervise them. However, conventional survey which observes around roads or residential areas by naked eyes was impossible to investigate completely, missing target areas and dangerous areas. Therefore, aerial forecasting techniques on the damaged area were developed using GIS, GPS, and helicopters for an accurate observation of systematic and scientific approach in this study. Moreover, advantages of the techniques application were confirmed to survey 972 dead tree samples at 349 position-coordinates in 32 cities (about $28,810km^2$), 2005. This study is expected to apply widely to find dead trees and the causes, particularly by pine wilt disease.

Investigation of Genetic Diversity of Fusarium oxysporum f. sp. fragariae Using PCR-RFLP

  • Kim, Ji-Su;Kang, Nam Jun;Kwak, Youn-Sig;Lee, Choungkeun
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.140-147
    • /
    • 2017
  • Fusarium wilts of strawberry, caused by Fusarium oxysporum f. sp. fragariae, is a serious soil-borne disease. Fusarium wilt causes dramatic yield losses in commercial strawberry production and it is a very stubborn disease to control. Reliable chemical control of strawberry Fusarium wilt disease is not yet available. Moreover, other well-known F. oxysporum have different genetic information from F. oxysporum f. sp. fragariae. This analysis investigates the genetic diversity of strawberry Fusairum wilt pathogen. In total, 110 pathogens were isolated from three major strawberry production regions, namely Sukok, Hadong, Sancheong in Gyeongnam province in South Korea. The isolates were confirmed using F. oxysporum f. sp. fragariae species-specific primer sets. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analyses were executed using the internal transcribed spacer, intergenic spacer, translation elongation factor1-${\alpha}$, and ${\beta}$-tubulin genes of the pathogens and four restriction enzymes: AluI, HhaI, HinP1I and HpyCH4V. Regarding results, there were diverse patterns in the three gene regions except for the ${\beta}$-tubulin gene region. Correlation analysis of strawberry cultivation region, cultivation method, variety, and phenotype of isolated pathogen, confirmed that genetic diversity depended on the classification of the cultivated region.

Direct Antimicrobial Activity and Induction of Systemic Resistance in Potato Plants Against Bacterial Wilt Disease by Plant Extracts

  • Hassan, M.A.E.;Bereika, M.F.F.;Abo-Elnaga, H.I.G.;Sallam, M.A.A.
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.352-360
    • /
    • 2009
  • The potential of three plants extracts, to protect potato plants against bacterial wilt caused by Ralstonia solanacearum was determined under greenhouse and field conditions. All soil drenching treatments of aqueous plant extracts of Hibsicus sabdariffa, Punica granatum and Eucalyptus globulus significantly reduced the disease severity compared with inoculated control. Although the applications of all three plant extracts resulted in similar reductions of disease severity in field up 63.23 to 68.39%, treatment of E. globulus leaf extract was found greater in restricting the symptom development than other the two plant extracts in the greenhouse. More than 94% reduction in the bacterial wilt symptom was observed in potato plants. All tested plant extracts were effective in inhibiting the growth of bacterial pathogen, not only in vitro, but also in stem of potato plants as compared with the inoculated control Potato plants treated with extract of H. sabdariffa reduced bacterial growth more effectively than treatment with P. granatum and E. globulus. Activity of defence-related enzymes, including peroxidase, polyphenoloxidase and phenylalanine ammonia lyase, were significantly increased in plants treated with the plant extracts compared to the control during the experimental period. In general, the higher enzymes activities were determined in both inoculated and non-inoculated treated potato plants after 8 days from plant extracts treatment. These results suggested that these plant extracts may be play an important role in controlling the potato bacterial wilt disease, through they have antimicrobial activity and induction of systemic resistance in potato plants.

Biological Potential of Bioorganic Fertilizer Fortified with Bacterial Antagonist for the Control of Tomato Bacterial Wilt and the Promotion of Crop Yields

  • Wu, Kai;Fang, Zhiying;Wang, Lili;Yuan, Saifei;Guo, Rong;Shen, Biao;Shen, Qirong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1755-1764
    • /
    • 2016
  • The application of Bacillus sp. in the biological control of plant soilborne diseases has been shown to be an environmentally friendly alternative to the use of chemical fungicides. In this study, the effects of bioorganic fertilizer (BOF) fortified with Bacillus amyloliquefaciens SQY 162 on the suppression of tomato bacterial wilt were investigated in pot experiments. The disease incidence of tomato wilt after the application of BOF was 65.18% and 41.62% lower at 10 and 20 days after transplantation, respectively, than in the control condition. BOF also promoted the plant growth. The SQY 162 populations efficiently colonized the tomato rhizosphere, which directly suppressed the number of Ralstonia solanacearum in the tomato rhizosphere soil. In the presence of BOF, the activities of defense-related enzymes in tomato were lower than in the presence of the control treatment, but the expression levels of the defense-related genes of the plants in the salicylic acid and jasmonic acid pathways were enhanced. It was also found that strain SQY 162 could secrete antibiotic surfactin, but not volatile organic compounds, to suppress Ralstonia. The strain could also produce plant growth promotion compounds such as siderophores and indole-3-acetic acid. Thus, owing to its innate multiple-functional traits and its broad biocontrol activities, we found that this antagonistic strain isolated from the tobacco rhizosphere could establish itself successfully in the tomato rhizosphere to control soilborne diseases.

Review of Disease Incidence of Major Crops in 2000 (2000년 농작물 병해 발생 개황)

  • Kim, Choong-Hoe
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • Climate in the year of 2000 was characterized as a long severe drought in tile spring, unusually high and low temperature in summer, two times of typoons, and floods by heavy rains in fall. Rice leaf and panicle blast and bacterial grain rot occurred severely comparing with 1999 and Bipolaris leaf spot spread over tile country. Phytophthora blight and anthracnose in red-pepper became epidemic especially in the late season causing severe yield losses. Tomato fusaruim wilt, CGMMV, powdery mildew, and sudden wilt syndrom of cucurbits and strawberry powdery mildew were also severe in 2000. In garlic, sclerotium rot occurred severely mainly due to the frequent rainfalls in planting time and much snowfalls in 1999's winter. Spring potato had severe infection of viruses due to a long spring drought, and fall potato had high incidence of bacterial soft rot and bacterial wilt due to fall floods by heavy rains. In sweet potato fusarium wilt was the most severe as in other year. Disease incidence of apple and pear trees was rotatively mild compared with previous years. In wheat and barley, Gibberella petch rarely occurred because of spring drought.

  • PDF

Meta-analysis Reveals That the Genus Pseudomonas Can Be a Better Choice of Biological Control Agent against Bacterial Wilt Disease Caused by Ralstonia solanacearum

  • Chandrasekaran, Murugesan;Subramanian, Dharaneedharan;Yoon, Ee;Kwon, Taehoon;Chun, Se-Chul
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.216-227
    • /
    • 2016
  • Biological control agents (BCAs) from different microbial taxa are increasingly used to control bacterial wilt caused by Ralstonia solanacearum. However, a quantitative research synthesis has not been conducted on the role of BCAs in disease suppression. Therefore, the present study aimed to meta-analyze the impacts of BCAs on both Ralstonia wilt disease suppression and plant (host) growth promotion. The analysis showed that the extent of disease suppression by BCAs varied widely among studies, with effect size (log response ratio) ranging from -2.84 to 2.13. The disease incidence and severity were significantly decreased on average by 53.7% and 49.3%, respectively. BCAs inoculation also significantly increased fresh and dry weight by 34.4% and 36.1%, respectively on average. Also, BCAs inoculation significantly increased plant yield by 66%. Mean effect sizes for genus Pseudomonas sp. as BCAs were higher than for genus Bacillus spp. Among antagonists tested, P. fluorescens, P. putida, B. cereus, B. subtilis and B. amyloliquefaciens were found to be more effective in general for disease reduction. Across studies, highest disease control was found for P. fluorescens, annual plants, co-inoculation with more than one BCA, soil drench and greenhouse condition were found to be essential in understanding plant responses to R. solanacearum. Our results suggest that more efforts should be devoted to harnessing the potential beneficial effects of these antagonists, not just for plant growth promoting traits but also in mode of applications, BCAs formulations and their field studies should be considered in the future for R. solanacearum wilt disease suppression.

Biocontrol Potential of Fungal Endophytes against Fusarium oxysporum f. sp. cucumerinum Causing Wilt in Cucumber

  • Abro, Manzoor Ali;Sun, Xiang;Li, Xingchun;Jatoi, Ghulam Hussain;Guo, Liang-Dong
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.598-608
    • /
    • 2019
  • Endophytic fungi have received much attention as plant growth promoters as well as biological control agents against many plant pathogens. In this study, 30 endophytic fungal species, isolated from various plants in China, were evaluated using in vitro dual culture assay against Fusarium oxysporum f. sp. cucumerinum, causing wilt in cucumber. The results of the present study clearly showed that all the 30 endophytic fungal isolates were highly capable of inhibiting the mycelial colony growth of Fusarium oxysporum f. sp. cucumerinum with inhibition % over 66% as compared to control treatments. Among all of them, 5 isolates were highly effective such as, Penicillium sp., Guignardia mangiferae, Hypocrea sp., Neurospora sp., Eupenicillium javanicum, and Lasiodiplodia theobromae, respectively. The Penicillium sp. and Hypocrea sp. were highly effective as compared to other isolates. From in vitro results 10 best isolates were selected for greenhouse studies. The results of the greenhouse studies showed that among all of them 3 endophytic fungal isolates successfully suppressed wilt severity when co-inoculation with pathogen Fusarium. oxysporum f. sp. cucumerinum. The endophytic fungi also enhanced plant growth parameters of the host plants, the antagonistic fungal isolates increased over all plant height, aerial fresh, and dry weight as compared to control.

Development qRT-PCR Protocol to Predict Strawberry Fusarium Wilt Occurrence

  • Hong, Sung Won;Kim, Da-Ran;Kim, Ji Su;Cho, Gyeongjun;Jeon, Chang Wook;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.163-170
    • /
    • 2018
  • Strawberry Fusarium wilt disease, caused by Fusarium oxysporum f. sp. fragariae, is the most devastating disease in strawberry production. The pathogen produces chlamydospores which tolerate against harsh environment, fungicide and survive for decades in soil. Development of detection and quantification techniques are regarded significantly in many soilborne pathogens to prevent damage from diseases. In this study, we improved specific-quantitative primers for F. oxysporum f. sp. fragariae to reveal correlation between the pathogen density and the disease severity. Standard curve $r^2$ value of the specific-quantitative primers for qRT-PCR and meting curve were over 0.99 and $80.5^{\circ}C$, respectively. Over pathogen $10^5cfu/g$ of soil was required to cause the disease in both lab and field conditions. With the minimum density to develop the wilt disease, the pathogen affected near 60% in nursery plantation. A biological control microbe agent and soil solarization reduced the pathogen population 2-fold and 1.5-fold in soil, respectively. The developed F. oxysporum f. sp. fragariae specific qRT-PCR protocol may contribute to evaluating soil healthiness and appropriate decision making to control the disease.

Effect of Organic Matter on the Occurrence of Fusarium Wilt in Cucumber (Fusarium oxysporum f. sp. cucumerinum에 의한 오이덩굴쪼김병의 발생에 미치는 유기물 시용의 효과)

  • Seo In Seuk
    • Korean Journal Plant Pathology
    • /
    • v.2 no.1
    • /
    • pp.43-47
    • /
    • 1986
  • Fusarium wilt caused by Fusarium oxysporum f. sp. cucumerinum has caused high damage in cucumber under greenhouse condition. This disease was suppressed $30\~55\%$ by application of organic matters compared with natural cropping soils. The suppression effect was the highest in the mushroom humic compost and fowl excretion matter among the various organic matters, varying with kinds of organic matters and degrees of humic resolvability. There was a slight difference in severity of fusarium wilt between sterilized organic matters and soils. The disease occurrence was delayed more in the nonsterilized organic matters and soils than in the sterilized ones. At 30 days after inoculation of F. oxysporum, numbers of Actinomycetes, fungi and bacteria were considerably increased, whereas F. oxysporum was decreased in the organic matter amended-soils compared with natural control soils.

  • PDF