Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.12.2017.0265

Development qRT-PCR Protocol to Predict Strawberry Fusarium Wilt Occurrence  

Hong, Sung Won (Division of Applied Life Science (BK21Plus), Gyeongsang National University)
Kim, Da-Ran (Department of Plant Medicine, Institute of Agriculture & Life Science, Gyeongsang National University)
Kim, Ji Su (Division of Applied Life Science (BK21Plus), Gyeongsang National University)
Cho, Gyeongjun (Division of Applied Life Science (BK21Plus), Gyeongsang National University)
Jeon, Chang Wook (Division of Applied Life Science (BK21Plus), Gyeongsang National University)
Kwak, Youn-Sig (Division of Applied Life Science (BK21Plus), Gyeongsang National University)
Publication Information
The Plant Pathology Journal / v.34, no.3, 2018 , pp. 163-170 More about this Journal
Abstract
Strawberry Fusarium wilt disease, caused by Fusarium oxysporum f. sp. fragariae, is the most devastating disease in strawberry production. The pathogen produces chlamydospores which tolerate against harsh environment, fungicide and survive for decades in soil. Development of detection and quantification techniques are regarded significantly in many soilborne pathogens to prevent damage from diseases. In this study, we improved specific-quantitative primers for F. oxysporum f. sp. fragariae to reveal correlation between the pathogen density and the disease severity. Standard curve $r^2$ value of the specific-quantitative primers for qRT-PCR and meting curve were over 0.99 and $80.5^{\circ}C$, respectively. Over pathogen $10^5cfu/g$ of soil was required to cause the disease in both lab and field conditions. With the minimum density to develop the wilt disease, the pathogen affected near 60% in nursery plantation. A biological control microbe agent and soil solarization reduced the pathogen population 2-fold and 1.5-fold in soil, respectively. The developed F. oxysporum f. sp. fragariae specific qRT-PCR protocol may contribute to evaluating soil healthiness and appropriate decision making to control the disease.
Keywords
disease prediction; pathogen densities; qRT-PCR; strawberry Fusarium wilt;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Raio, A., Zoina, A. and Moore, L. 1997. The effect of solar heating of soil on natural and inoculated agrobacteria. Plant Pathol. 46:320-328.   DOI
2 Sankaran, S., Mishra, A., Ehsani, R. and Davis, C. 2010. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 72:1-13.   DOI
3 Scarlett, K., Tesoriero, L., Daniel, R. and Guest, D. 2013. Detection and quantification of Fusarium oxysporum f. sp. cuc- umerinum in environmental samples using a specifc quantitative PCR assay. Eur. J. Plant Pathol. 137:315-324.   DOI
4 Schena, L., Li Destri, N. M., Sanzani, S., Faedda, R., Ippolito, A. and Cacciola, S. 2013. Development of quantitative PCR detection methods for phytopathogenic fungi and oomycetes. J. Plant Pathol. 95:7-24.
5 Suga, H., Hirayama, Y., Morishima, M., Suzuki, T., Kageyama, K. and Hyakumachi, M. 2013. Development of PCR primers to identify Fusarium oxysporum f. sp. fragariae. Plant Dis. 97:619-625.   DOI
6 Tezuka, N. and Makino, T. 1991. Biological control of Fusarium wilt of strawberry by nonpathogenic Fusarium oxysporum isolated from strawberry. Japanese J. Phytopathol. 57:506-511.   DOI
7 van Dam, P., Fokkens, L., Schmidt, S. M., Linmans, J. H., Kistler, H. C., Ma, L. and Rep, M. 2016. Effector profles distinguish formae speciales of Fusarium oxysporum. Environ. Microbiol. 18:4087-4102.   DOI
8 Winks, B. and Williams, Y. 1965. A wilt of strawberry caused by a new form of Fusarium oxysporum. Queensland J. Agric. Anim. Sci. 22:475-479.
9 Zambounis, A., Paplomatas, E. and Tsaftaris, A. 2007. Intergenic spacer-RFLP analysis and direct quantifcation of Australian Fusarium oxysporum f. sp. vasinfectum isolates from soil and infected cotton tissues. Plant Dis. 91:1564-1573.   DOI
10 Anaya, N. and Roncero, M. I. G. 1995. Skippy, a retrotransposon from the fungal plant pathogen Fusarium oxysporum. Mol. Gen. Genet. 249:637-647.   DOI
11 Ashworth, L. and Gaona, S. 1982. Evaluation of clear polyethylene mulch for controlling Verticillium wilt in established pistachio nut groves. Phytopathology 72:243-246.   DOI
12 Barrett, L. G., Kniskern, J. M., Bodenhausen, N., Zhang, W. and Bergelson, J. 2009. Continua of specifcity and virulence in plant host-pathogen interactions: causes and consequences. New Phytol. 183:513-529.   DOI
13 Bilodeau, G. J., Koike, S. T., Uribe, P. and Martin, F. N. 2012. Development of an assay for rapid detection and quantifcation of Verticillium dahliae in soil. Phytopathology 102:331-343.   DOI
14 Bonants, P. J., van Gent-Pelzer, M. P., Hooftman, R., Cooke, D. E., Guy, D. C. and Duncan, J. M. 2004. A combination of baiting and different PCR formats, including measurement of real-time quantitative fuorescence, for the detection of Phytophthora fragariae in strawberry plants. Eur. J. Plant Pathol. 110:689-702.   DOI
15 Hua-Van, A., Daviere, J., Kaper, F., Langin, T. and Daboussi, M. 2000. Genome organization in Fusarium oxysporum: clusters of class II transposons. Curr. Genet. 37:339-347.   DOI
16 Capote, N., Pastrana, A. M., Aguado, A. and Sanchez-Torres, P. 2012. Molecular tools for detection of plant pathogenic fungi and fungicide resistance. In: Plant pathology, ed. by C. J. R. Cumagun, pp. 151-202. InTech, Rijeka, Croatia.
17 Cha, J. Y., Han, S., Hong, H. J., Cho, H., Kim, D., Kwon, Y., Kwon, S. K., Crusemann, M., Lee, Y. B., Kim, J. F., Giaever, G., Nislow, C., Moore, B. S., Thomashow, L. S., Weller, D. M. and Kwak, Y. S. 2016. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 10:119-129.   DOI
18 Chalvet, F., Grimaldi, C., Kaper, F., Langin, T. and Daboussi, M. 2003. Hop, an active mutator-like element in the genome of the fungus Fusarium oxysporum. Mol. Biol. Evol. 20:1362-1375.   DOI
19 Filion, M., Arnaud, M. and Jabaji-Hare, S. 2003. Quantification of Fusarium solani f. sp. phaseoli in mycorrhizal bean plants and surrounding mycorrhizosphere soil using real-time polymerase chain reaction and direct isolations on selective media. Phytopathology 93:229-235.   DOI
20 Frank, S. A. 1996. Models of parasite virulence. Q. Rev. Biol. 71:37-78.   DOI
21 Jimenez-Fernandez, D., Montes-Borrego, M., Navas-Cortes, J. A., Jimenez-Diaz, R. M. and Landa, B. B. 2010. Identification and quantifcation of Fusarium oxysporum in planta and soil by means of an improved specifc and quantitative PCR assay. Appl. Soil Ecol. 46:372-382.   DOI
22 Kodama, T. and Fukuit, T. 1982. Application of solar heating with plastic-flm mulching in the out-door feld for control of Fusarium wilt of strawberry. Japanese J. Phytopathol. 48:699-701.   DOI
23 Katan, J. 1981. Solar heating (solarization) of soil for control of soilborne pests. Annu. Rev. Phytopathol. 19:211-236.   DOI
24 Kim, D., Gang, G., Cho, H., Yoon, H. and Kwak, Y. 2015. Evaluation of antimicrobial activity and disease control effcacy of sodium dichloroisocyanurate (NaDCC) against major strawberry diseases. Korean J. Pestic. Sci. 19:47-53 (in Korean).   DOI
25 Kodama, T. 1974. Characters of strawberry yellows caused by Fusarium and difference of its effect on the grown varieties. Bull. Nara Agri. Expt. Sta. 6:68-75.
26 Li, M., Asano, T., Suga, H. and Kageyama, K. 2011. A multiplex PCR for the detection of Phytophthora nicotianae and P. cactorum, and a survey of their occurrence in strawberry production areas of Japan. Plant Dis. 95:1270-1278.   DOI
27 Maas, J. L. 1998. Compendium of strawberry diseases. APS press, St. Paul, MN, USA.
28 Lievens, B., Brouwer, M., Vanachter, A. C., Cammue, B. P. and Thomma, B. P. 2006. Real-time PCR for detection and quantifcation of fungal and oomycete tomato pathogens in plant and soil samples. Plant Sci. 171:155-165.   DOI
29 Lievens, B., Brouwer, M., Vanachter, A. C., Levesque, C. A., Cammue, B. and Thomma, B. P. 2005. Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray. Environ. Microbial. 7:1698-1710.   DOI
30 Lievens, B., Rep, M. and Thomma, B. P. 2008. Recent developments in the molecular discrimination of formae speciales of Fusarium oxysporum. Pest Manag. Sci. 64781-788.   DOI
31 McCartney, H. A., Foster, S. J. and Fraaije, B. A. and Ward, E. 2003. Molecular diagnostics for fungal plant pathogens. Pest Manag. Sci. 59:129-142.   DOI
32 Nagaraian, G., Nam, M., Song, J., Yoo, S. and Kim, H. 2004. Genetic variation in Fusarium oxysporum f. sp. fagariae populations based RAPD and rDNA RFLP analyses. Plant Pathol. J. 20:264-270.   DOI
33 Pasquali, M., Acquadro, A., Balmas, V., Migheli, Q., Gullino, M. L. and Garibaldi, A. 2004. Development of PCR primers for a new Fusarium oxysporum pathogenic on Paris daisy (Argyranthemum frutescens L.). Eur. J. Plant Pathol. 110:7-11.
34 Pinkerton, J., Ivors, K., Miller, M. and Moore, L. 2000. Effect of soil solarization and cover crops on populations of selected soilborne plant pathogens in western Oregon. Plant Dis. 84:952-960.   DOI
35 Porebski, S., Bailey, L. G. and Baum, R. 1997. Modifcation of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15:8-15.   DOI