• 제목/요약/키워드: Wild Type

검색결과 2,379건 처리시간 0.031초

국내 야생수집 버섯의 아미노산 함량 분석 (The amino acid contents of wild mushrooms in Korea)

  • 안기홍;조재한;한재구
    • 한국버섯학회지
    • /
    • 제18권1호
    • /
    • pp.107-114
    • /
    • 2020
  • 본 연구는 국내에서 수집한 15종의 야생버섯류를 식용가능 및 약용가능, 식독불명 또는 독버섯으로 분류하여 아미노산 성분함량을 분석하였다. 식용가능한 야생버섯들의 총 아미노산 성분함량의 범위는 866.4 ~ 1,220.5 mg/kg이었으며, 필수 아미노산의 총 함량은 301.4 ~ 490.2 mg/kg이었다. 그 중 흰우단버섯(OK811)에서 다량의 류신(Leu), 페닐알라닌(Phe), 시스테인(Cys), 글루탐산(Glu) 함량을 보이며 식용가능한 야생버섯류 중에서 총 필수 아미노산 함량이 가장 높았다. 약용가능한 버섯류의 총 아미노산 성분함량의 범위는 802.6 ~ 1,233.7 mg/kg이었으며 필수 아미노산 총 함량의 범위는 263.5 ~ 412.8 mg/kg이었다. 그 중 간버섯속(OK1071)의 총 아미노산 및 필수 아미노산 함량이 약용가능한 야생버섯류 중에서 가장 높았다. 특히 비필수 아미노산 성분인 시스테인(Cys)은 204.1 mg/kg가 검출되어 약용가능 야생버섯 뿐만 아니라 식용가능 야생버섯류에 비하여 훨씬 높은 함량을 나타냈다. 독버섯 또는 식독불명 버섯류의 총 아미노산 함량 범위는 681.8 ~ 1223.4 mg/kg 이었으며, 필수 아미노산의 함량의 범위는 229.1 ~ 442.8 mg/kg이다. 독버섯으로 알려진 노랑다발(OK826)은 이들 버섯류 중에서 가장 높은 총 아미노산 함량을 보였으며, 알기닌(Arg)은 109.2 mg/kg로 식용 또는 약용가능한 버섯류들에 비하여 높게 검출되었고 페닐알라닌(Phe)은 120.6 mg/kg로 약용가능한 야생 버섯류들에 비하여 높게 나타났다. 본 연구결과는 향후 야생버섯을 이용한 신품종 또는 산업적 이용 등을 위한 우수 버섯자원 선발에 필요한 기초자료로 활용하고자 한다.

Interaction of promyelocytic leukemia/p53 affects signal transducer and activator of transcription-3 activity in response to oncostatin M

  • Lim, Jiwoo;Choi, Ji Ha;Park, Eun-Mi;Choi, Youn-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권3호
    • /
    • pp.203-212
    • /
    • 2020
  • Promyelocytic leukemia (PML) gene, through alternative splicing of its C-terminal region, generates several PML isoforms that interact with specific partners and perform distinct functions. The PML protein is a tumor suppressor that plays an important role by interacting with various proteins. Herein, we investigated the effect of the PML isoforms on oncostatin M (OSM)-induced signal transducer and activator of transcription-3 (STAT-3) transcriptional activity. PML influenced OSM-induced STAT-3 activity in a cell type-specific manner, which was dependent on the p53 status of the cells but regardless of PML isoform. Interestingly, overexpression of PML exerted opposite effects on OSM-induced STAT-3 activity in p53 wild-type and mutant cells. Specifically, overexpression of PML in the cell lines bearing wild-type p53 (NIH3T3 and U87-MG cells) decreased OSM-induced STAT-3 transcriptional activity, whereas overexpression of PML increased OSM-induced STAT-3 transcriptional activity in mutant p53-bearing cell lines (HEK293T and U251-MG cells). When wild-type p53 cells were co-transfected with PML-IV and R273H-p53 mutant, OSM-mediated STAT-3 transcriptional activity was significantly enhanced, compared to that of cells which were transfected with PML-IV alone; however, when cells bearing mutant p53 were co-transfected with PML-IV and wild-type p53, OSM-induced STAT-3 transcriptional activity was significantly decreased, compared to that of transfected cells with PML-IV alone. In conclusion, PML acts together with wild-type or mutant p53 and influences OSM-mediated STAT-3 activity in a negative or positive manner, resulting in the aberrant activation of STAT-3 in cancer cells bearing mutant p53 probably might occur through the interaction of mutant p53 with PML.

Influence of Lead on Repetitive Behavior and Dopamine Metabolism in a Mouse Model of Iron Overload

  • Chang, JuOae;Kueon, Chojin;Kim, Jonghan
    • Toxicological Research
    • /
    • 제30권4호
    • /
    • pp.267-276
    • /
    • 2014
  • Exposures to lead (Pb) are associated with neurological problems including psychiatric disorders and impaired learning and memory. Pb can be absorbed by iron transporters, which are up-regulated in hereditary hemochromatosis, an iron overload disorder in which increased iron deposition in various parenchymal organs promote metal-induced oxidative damage. While dysfunction in HFE (High Fe) gene is the major cause of hemochromatosis, the transport and toxicity of Pb in Hfe-related hemochromatosis are largely unknown. To elucidate the relationship between HFE gene dysfunction and Pb absorption, H67D knock-in Hfe-mutant and wild-type mice were given drinking water containing Pb 1.6 mg/ml ad libitum for 6 weeks and examined for behavioral phenotypes using the nestlet-shredding and marble-burying tests. Latency to nestlet-shredding in Pb-treated wild-type mice was prolonged compared with non-exposed wild-types (p < 0.001), whereas Pb exposure did not alter shredding latency in Hfe-mutant mice. In the marble-burying test, Hfe-mutant mice showed an increased number of marbles buried compared with wild-type mice (p = 0.002), indicating more repetitive behavior upon Hfe mutation. Importantly, Pb-exposed wild-type mice buried more marbles than non-exposed wild-types, whereas the number of marbles buried by Hfe-mutant mice did not change whether or not exposed to Pb. These results suggest that Hfe mutation could normalize Pb-induced behavioral alteration. To explore the mechanism of repetitive behavior caused by Pb, western blot analysis was conducted for proteins involved in brain dopamine metabolism. The levels of tyrosine hydroxylase and dopamine transporter increased upon Pb exposure in both genotypes, whereas Hfe-mutant mice displayed down-regulation of the dopamine transporter and dopamine D1 receptor with D2 receptor elevated. Taken together, our data support the idea that both Pb exposure and Hfe mutation increase repetitive behavior in mice and further suggest that these behavioral changes could be associated with altered dopaminergic neurotransmission, providing a therapeutic basis for psychiatric disorders caused by Pb toxicity.

대장암 세포주 SNU C2A에서 etoposide 처리에 의한 apoptosis 유도 (Induction of apoptosis by etoposide treatment in colon cancer cell line SNU C2A)

  • 정지연;나윤숙;정호철;오상진
    • IMMUNE NETWORK
    • /
    • 제1권3호
    • /
    • pp.221-229
    • /
    • 2001
  • Background: Inactivation of tumor suppressor genes is believed to be important in the development of many human malignancies. Recently, several lines of evidence have indicated that the wild type p53 gene located at 17p13.3, may function as a tumor suppressor gene and that a mutant p53 gene could promote transformation by inactivating normal p53 function in a dominant negative fashion. These broad spectrum of p53 mutation in human cancers provide that mutant p53 and their protein may be potential targets of tumor diagnostic and therapeutic interventions. Method: Colony formation was performed to investigate growth suppressional ability. p53 expression pattern was examined by western blot and p53-mediated transactivation ability was assessed by CAT activity. SNU C2A cells were observed in apoptotic aspects induced by etoposide and $H_2O_2$ treatment, detecting sensitivity on agent, DNA fragmentation through agarose gel, chromatin condensation by fluorescence microscope, and cell cycle distribution by FACS. Result: 1) p53 mutant his179arg ($histidine{\rightarrow}arginine$) detected in SNU C2A cells lost transcriptional activity and growth suppression ability, showing dominant negative effect on its wild type p53. 2) Etoposide-treated SNU C2A cells induced apoptosis, exhibiting dramatic reduction of cell growth, DNA fragmentation, nuclear condensation formation of apoptotic body and increment of sub-G1 cell fraction. 3) Etoposide and $H_2O_2$-treated SNU C2A cells have no high increase of p53 expression and overexpressed p53 protein changed localization, from cytoplasm to nucleus. Also, p53-mediated transcriptional activity was increased by agents-treatment. Conclusion: SNU C2A cells coexpress wild-type and mutant p53 protein induced apoptosis in the condition on DNA damage, through localizational shift from cytoplasm to nucleus of p53 protein rather than the induction of p53 protein. SNU C2A cells derived mutant p53 his179arg abrogated both the growth supression ability and transactivational activity, showing inhibition effect on transcriptional activity of wild type p53, but did not repress the activity of wild type p53 in SNU C2A cells owing to dominant activity of wild type. These cell condition may provide new gene therapeutic implications leading effective antiproliferation of cell when mutant and wild-type p53 protein were co-expressed in cell.

  • PDF

Mutational Analysis of Thermus caldophilus GK24 ${\beta}$-Glycosidase: Role of His119 in Substrate Binding and Enzyme Activity

  • Oh, Eun-Joo;Lee, Yoon-Jin;Choi, Jeong-Jin;Seo, Moo-Seok;Lee, Mi-Sun;Kim, Gun-A;Kwon, Suk-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.287-294
    • /
    • 2008
  • Three amino acid residues (His119, Glu164, and Glu338) in the active site of Thermus caldophilus GK24 ${\beta}$-glycosidase (Tca ${\beta}$-glycosidase), a family 1 glycosyl hydrolase, were mutated by site-directed mutagenesis. To verify the key catalytic residues, Glu164 and Glu338 were changed to Gly and Gln, respectively. The E164G mutation resulted in drastic reductions of both ${\beta}$-galactosidase and ${\beta}$-glucosidase activities, and the E338Q mutation caused complete loss of activity, confirming that the two residues are essential for the reaction process of glycosidic linkage hydrolysis. To investigate the role of His119 in substrate binding and enzyme activity, the residue was substituted with Gly. The H119G mutant showed 53-fold reduced activity on 5mM p-nitrophenyl ${\beta}$-D-galactopyranoside, when compared with the wild type; however, both the wild-type and mutant enzymes showed similar activity on 5mM p-nitrophenyl ${\beta}$-D-glucopyranoside at $75^{\circ}C$. Kinetic analysis with p-nitrophenyl ${\beta}$-D-galactopyranoside revealed that the $k_{cat}$ value of the H119G mutant was 76.3-fold lower than that of the wild type, but the $K_m$ of the mutant was 15.3-fold higher than that of the wild type owing to the much lower affinity of the mutant. Thus, the catalytic efficiency $(k_{cat}/K_m)$ of the mutant decreased to 0.08% to that of the wild type. The $k_{cat}$ value of the H119G mutant for p-nitrophenyl ${\beta}$-D-glucopyranoside was 5.l-fold higher than that of the wild type, but the catalytic efficiency of the mutant was 2.5% of that of the wild type. The H119G mutation gave rise to changes in optima pH (from 5.5-6.5 to 5.5) and temperature (from $90^{\circ}C\;to\;80-85^{\circ}C$). This difference of temperature optima originated in the decrease of H119G's thermostability. These results indicate that His119 is a crucial residue in ${\beta}$-galactosidase and ${\beta}$-glucosidase activities and also influences the enzyme's substrate binding affinity and thermostability.

Ralstonia pseudosolanacearum 생존에 관여하는 Sigma S 역할 (Sigma S Involved in Bacterial Survival of Ralstonia pseudosolanacearum)

  • 최혜경;조은정;허지은;공현기;이선우
    • 식물병연구
    • /
    • 제30권2호
    • /
    • pp.148-156
    • /
    • 2024
  • Ralstonia pseudosolanacearum은 토양과 물에서 오랫동안 생존하고, 가지과 작물에 심각한 풋마름병을 일으키는 식물병원세균이다. Simga S는 세균의 스트레스 환경에서 반응 또는 정지기 동안 유전자 발현을 조절하는 RNA 중합효소 복합체의 일부인 단백질이다. 본 연구는 스트레스 조건에서 R.pseudosolanacearum의 sigma S의 역할을 조사하기 위해서, R.pseudosolanacearum의 GMI1000 균주의 sigma S를 암호화하는 rpoS 유전자 변이체를 준비하여 야생형 균주와 세균의 특징을 비교하였다. 아울러 rpoS 유전자 역할은 원래 유전자를 변이체에 도입하여 rpoS 유전자 표현형 회복을 확인하였다. 야생형 균주와 rpoS 결여 변이체는 생장 속도, 외피다당류 생산, 식물체에서 병원성, 식물 세포벽 분해 효소 활성에서 차이를 보이지 않았다. 그러나 야생형 균주는 영양분결핍 조건에서 변이체보다 더 민감하게 반응하였고 과산화수소가 첨가된 조건에서 변이체보다 덜 민감하게 반응하였다. 흥미롭게도 영양분결핍 조건에서 rpoS 결여 변이체에서는 장기간 생균수를 유지하지만, 같은 조건에서 야생형 균주 생균수는 빠르게 감소하였다. 그리고 두 균주 배양액 pH를 측정한 결과, 야생형 균주와 변이체 간에 상당한 차이가 나타났다. 야생형 균주는 생장하면서 빠르게 배지의 pH가 감소하여 산성화되었다. 그러므로 야생형 균주의 빠른 사멸은 배지가 산성화되면서 정지기 상태 세균의 산성 pH에 대한 민감도 때문일 것이다. Biolog 분석으로 rpoS 변이체는 acetic acid, D-alanine, D-trehalose, L-histidine을 이용하지 못함을 확인하였다. 본 연구 결과는 R. pseudosolanacearum 세균의 sigma S가 영양분결핍 조건에서 정지기 동안 유기산 생산 또는 이용을 조절하며 정지기 세포사멸도 조절하는 것을 보여준다.

Enhanced Biomass and ${\gamma}$-Linolenic Acid Production of Mutant Strain Arthrospira platensis

  • Choi, Gang-Guk;Bae, Myong-Sook;Ahn, Chi-Yong;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.539-544
    • /
    • 2008
  • A mutant of Arthrospira platensis PCC 9108, strain M9108, obtained by mutagenesis with UV treatment, was able to mixotrophically grow in an SOT medium containing 40 g of glucose/l. The biomass and specific growth rate of strain M9108 (4.10 g/l and 0.70/d) were 1.9-fold and 1.4-fold higher, respectively, than those of the wild type (2.21 g/l and 0.58/d) under mixotrophic culture condition. In addition, when compared with the wild type, the content of ${\gamma}$-linolenic acid (GLA) in the mutant was increased when glucose concentration was increased. Compared with the wild type, the GLA content of the mutant was 2-fold higher in autotrophic culture and about 3-fold higher in mixotrophic culture. Thus, the mutant appears to possess more efficient facility to assimilate and metabolize glucose and to produce more GLA than its wild-type strain.

광합성 기구 조작을 통한 비유황 자색 광합성 세균, Rhodobacter sphaeroides의 생산성 증대 (The improvement of productivity of a photosynthetic purple bacterium, Rhodobacter sphaeroides by manipulating the photosynthetic apparatus)

  • 김낙종;이철균
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.189-192
    • /
    • 2000
  • 광합성 홍색세균의 light harvesting complex II (LHC II)발현 유전자가 제거된 돌연변이종을 halogen 램프 하에서 거리에 따라 광도를 달리하며 배양하여 wild type과 생산성을 비교한 결과 낮은 광도(34 ${\mu}E/m^2/s$)에서는 wild type가 높은 광도 (376, 118 ${\mu}E/m^2/s$)에서는 mutant가 높은 세포농도를 나타내었다. 특히 118 ${\mu}E/m^2/s$에서 LHC $II^-$ mutant가 56% 높은 세포생산량을 보였다. 이는 세포내 pigment양의 감소로 mutual shading effect가 감소하였기 때문으로 판단되었다.

  • PDF

Directed evolution을 이용한 (S)-Ketoprofen ethlyester의 광학분활용 Esterase의 특성 개량

  • 김승범;김지희;유연우
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.445-449
    • /
    • 2003
  • As for the purpose, we first introduce an random mutation into wild-type gene to expand a mutation space, and then further recombine the mutant genes by staggered extension process PCR. As a result, we obtained the best clones 6-52 that showed a high activity and stability, from a round of error prone and staggered extension process PCR. The purified enzyme showed a similar pH stability to the wild-type enzyme and reveal a slightly high optimum pH at 12. In the optimum temperature, an identical dependency was also showed and a quite high stability in the thermal stability was obtained. Along with this, the enzyme was also stable at a reaction that supplement with a 15 % of ethanol as an additive. The addition of other solvents and surfactants did not improve the reaction and thus resulted in a similar profile to those of wild-type enzyme. The specific activity on the target compound rac-ketoprofen ethyl ester was calculated to be about 85, 000 unit, and the kinetic constants Km and Vmax were determined to be 0.2 mM and 90 mM/mg-protein/min respectively. The deduced amino acid alignment with the wild type enzyme revealed five mutations at L120P, I208V, T249A, D287H and T357A. Based on these observations, the site directed mutagenesis to delineate the mutagenic effect is under progress.

  • PDF

Phycobilisome composition in Chondrus crispus (Gigartinales, Rhodophyta) from a wild type strain and its vegetatively derived green mutant

  • Cornish, M. Lynn;O' Leary, Stephen J.B.;Garbary, David J.
    • ALGAE
    • /
    • 제28권1호
    • /
    • pp.121-129
    • /
    • 2013
  • Intact phycobilisomes from a wild-type red Chondrus crispus and its vegetatively derived green mutant were isolated by centrifugation through a discontinuous sucrose density gradient. Pigment composition was subsequently characterized by spectrophotometry. Vegetative thalli of the two strains grown together for six months in the laboratory resulted in different pigment profiles. Two pigmented phycobilisome bands appeared in the sucrose gradient of the wild-type alga, a purple coloured one, and a pink one, whereas only a single blue band appeared in the gradient of the green mutant. Spectrophotometric and fluorescence analyses identified the phycobiliprotein composition of the purple band as the typical phycoerythrin-phycocyanin-allophycocyanin complement in the wild-type, but there was no detectable phycoerythrin present in the blue band of the green mutant. Sodium dodecyl sulphate, preparative polyacrylamide gel electrophoresis analysis confirmed the presence of allophycocyanin subunits in all extracts, but firm evidence of an R-phycoerythrin linker polypeptide in the blue band was missing. These results highlight the ability of C. crispus to adapt to a phycoerythrin deficiency by adjusting light harvesting pigment ratios.