Browse > Article

Enhanced Biomass and ${\gamma}$-Linolenic Acid Production of Mutant Strain Arthrospira platensis  

Choi, Gang-Guk (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB))
Bae, Myong-Sook (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB))
Ahn, Chi-Yong (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB))
Oh, Hee-Mock (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB))
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.3, 2008 , pp. 539-544 More about this Journal
Abstract
A mutant of Arthrospira platensis PCC 9108, strain M9108, obtained by mutagenesis with UV treatment, was able to mixotrophically grow in an SOT medium containing 40 g of glucose/l. The biomass and specific growth rate of strain M9108 (4.10 g/l and 0.70/d) were 1.9-fold and 1.4-fold higher, respectively, than those of the wild type (2.21 g/l and 0.58/d) under mixotrophic culture condition. In addition, when compared with the wild type, the content of ${\gamma}$-linolenic acid (GLA) in the mutant was increased when glucose concentration was increased. Compared with the wild type, the GLA content of the mutant was 2-fold higher in autotrophic culture and about 3-fold higher in mixotrophic culture. Thus, the mutant appears to possess more efficient facility to assimilate and metabolize glucose and to produce more GLA than its wild-type strain.
Keywords
Arthrospira platens is; biomass${\gamma}$-linolenic acid; GLA; mixotrophic cultivation; UV;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
1 Biagi, P. L., A. Bordoni, M. Masi, G. Ricci, C. Fanelli, A. Patrizi, and E. Ceccolini. 1988. A long-term study on the use of Evening Primrose Oil (Efamol) in atopic children. Drugs Exp. Clin. Res. 14: 285-290
2 Bligh, E. G. and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917   DOI
3 Cohen, Z., A. Vonshak, and A. Richmond. 1987. Fatty acid composition of Spirulina strains growth under various environmental conditions. Phytochemistry 26: 2255-2258   DOI   ScienceOn
4 Tripathi, U., G. Venkateshwaran, R. Sarada, and G. A. Ravishankar. 2001. Studies on Haematococcus pluvialis for improved production of astaxanthin by mutagenesis. World J. Microbiol. Biotechnol. 17: 143-148   DOI
5 Kim, C.-J., Y.-H. Jung, S.-R. Ko, H.-I. Kim, Y.-H. Park, and H.-M. Oh. 2007. Raceway cultivation of Spirulina platensis using underground water. J. Microbiol. Biotechnol. 17: 853-857   과학기술학회마을
6 Tel-Or, E. 1980. Adaptation to salt of the photosynthetic apparatus in Cyanobacteria. FEBS Lett. 110: 253-256   DOI   ScienceOn
7 Ciferri, O. 1983. Spirulina, the edible microorganism. Microbiol. Rev. 47: 551-578
8 Kim, J.-D. and C.-G. Lee. 2006. Diversity of heterocystous filamentous cyanobacteria (blue-green algae) from rice paddy fields and their diffential susceptibility to ten fungicides used in Korea. J. Microbiol. Biotechnol. 16: 240-246   과학기술학회마을
9 Piorreck, M., K.-H. Baasch, and P. Pohl. 1984. Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23: 217-233   DOI   ScienceOn
10 Cohen, Z., M. Reungjitchachawali, W. Siangdung, and M. Tanticharoen. 1993. Production and partial purification of $\gamma$-linolenic acid and some pigments from Spirulina platensis. J. Appl. Phycol. 5: 109-115   DOI   ScienceOn
11 Ishikawa, T., Y. Fujiyama, O. Igarashi, M. Morino, N. Tada, A. Kagami, T. Sakamoto, M. Nagano, and H. Nakamura. 1989. Effects of $\gamma$-linolenic acid on plasma lipoproteins and apolipoproteins. Atherosclerosis 75: 95-104   DOI
12 Cohen, Z. 1997. The chemicals of Spirulina, pp. 205-212. In A. Vonshak (ed.), Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology. Taylor & Francis Ltd., London, U.K.
13 Lepage, G. and C. C. Toy. 1984. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J. Lipid Res. 25: 1391-1396
14 Richmond, A., S. Karg, and S. Boussiba. 1982. Effects of bicarbonate and carbon dioxide on the competition between Chlorella vulgaris and Spirulina platensis. Plant Cell Physiol. 23: 1411-1417
15 Horrobin, D. F. and M. S. Manku. 1983. How do polyunsaturated fatty acids lower plasma cholesterol levels? Lipids 18: 558-562   DOI   ScienceOn
16 Nichols, B. W. and B. J. B. Wood. 1968. The occurrence and biosynthesis of $\gamma$-linolenic acid in a blue-green alga, Spirulina platensis. Lipids 3: 46-50   DOI
17 Kim, C.-J., S.-K. Yoon, H.-I. Kim, Y.-H. Park, and H.-M. Oh. 2006. Effects of Spirulina platensis as feed additive and probiotics on growth of shrimp Fenneropenaeus chinensis. J. Microbiol. Biotechnol. 16: 1248-1254   과학기술학회마을
18 Tanticharoen, M., M. Reungjitchachawali, B. Boonag, P. Vontaveesuk, A. Vonshak, and Z. Cohen. 1994. Optimization of $\gamma$-linolenic acid (GLA) production in Spirulina platensis. J. Appl. Phycol. 6: 295-300   DOI   ScienceOn
19 Holzinger, A. and C. Lutz. 2006. Algae and UV irradiation: Effects on ultrastructure and related metabolic functions. Micron 37: 190-207   DOI   ScienceOn
20 Hirano, M., H. Mori, Y. Miura, N. Matsunaga, N. Nakamura, and T. Matsunaga. 1990. $\gamma$-Linolenic acid production by microalgae. Appl. Biochem. Biotechnol. 24/25: 183-191   DOI
21 Chen, F. 1996. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 14: 421-426   DOI   ScienceOn