DOI QR코드

DOI QR Code

The amino acid contents of wild mushrooms in Korea

국내 야생수집 버섯의 아미노산 함량 분석

  • An, Gi-Hong (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Cho, Jae-Han (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Han, Jae-Gu (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA)
  • 안기홍 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 조재한 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 한재구 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과)
  • Received : 2020.02.07
  • Accepted : 2020.03.05
  • Published : 2020.03.31

Abstract

Fifteen species of wild mushrooms, which are classified as edible, medicinal, poisonous, or unknown types, were analyzed for their free amino acid contents. The average total amino acid content was 1,120.0 mg/kg in the edible type, 1,037.8 mg/kg in the medicinal type, and 1,010.8 mg/kg in the poisonous or unknown type, respectively. The edible type wild mushrooms showed the highest average content of total essential amino acids; conversely, the poisonous or unknown type showed the lowest content. Leucopaxillus giganteus (OK811) showed the highest total amino acid (1,212.4 mg/kg) and essential amino acid (490.2 mg/kg) contents among edible type, while Pycnoporus sanguineus (OK1071) showed the highest total amino acid (1,233.7 mg/kg) and essential amino acid (412.8 mg/kg) contents among the medicinal type. Among the poisonous or unknown type, Hypholoma fasciculare (OK826) showed the highest total amino acid (1,223.4 mg/kg) and essential amino acid (442.8 mg/kg) contents. The amino acid contents of wild mushrooms are fundamental data for the screening of useful genetic resources with nutritionally superior properties.

본 연구는 국내에서 수집한 15종의 야생버섯류를 식용가능 및 약용가능, 식독불명 또는 독버섯으로 분류하여 아미노산 성분함량을 분석하였다. 식용가능한 야생버섯들의 총 아미노산 성분함량의 범위는 866.4 ~ 1,220.5 mg/kg이었으며, 필수 아미노산의 총 함량은 301.4 ~ 490.2 mg/kg이었다. 그 중 흰우단버섯(OK811)에서 다량의 류신(Leu), 페닐알라닌(Phe), 시스테인(Cys), 글루탐산(Glu) 함량을 보이며 식용가능한 야생버섯류 중에서 총 필수 아미노산 함량이 가장 높았다. 약용가능한 버섯류의 총 아미노산 성분함량의 범위는 802.6 ~ 1,233.7 mg/kg이었으며 필수 아미노산 총 함량의 범위는 263.5 ~ 412.8 mg/kg이었다. 그 중 간버섯속(OK1071)의 총 아미노산 및 필수 아미노산 함량이 약용가능한 야생버섯류 중에서 가장 높았다. 특히 비필수 아미노산 성분인 시스테인(Cys)은 204.1 mg/kg가 검출되어 약용가능 야생버섯 뿐만 아니라 식용가능 야생버섯류에 비하여 훨씬 높은 함량을 나타냈다. 독버섯 또는 식독불명 버섯류의 총 아미노산 함량 범위는 681.8 ~ 1223.4 mg/kg 이었으며, 필수 아미노산의 함량의 범위는 229.1 ~ 442.8 mg/kg이다. 독버섯으로 알려진 노랑다발(OK826)은 이들 버섯류 중에서 가장 높은 총 아미노산 함량을 보였으며, 알기닌(Arg)은 109.2 mg/kg로 식용 또는 약용가능한 버섯류들에 비하여 높게 검출되었고 페닐알라닌(Phe)은 120.6 mg/kg로 약용가능한 야생 버섯류들에 비하여 높게 나타났다. 본 연구결과는 향후 야생버섯을 이용한 신품종 또는 산업적 이용 등을 위한 우수 버섯자원 선발에 필요한 기초자료로 활용하고자 한다.

Keywords

References

  1. An GH, Cho JH, Lee KH, Han JG. 2019a. Physiological activities of extracts of wild mushrooms collected in Korea. J Mushrooms 17: 70-77.
  2. An GH, Han JG, Cho JH. 2019b. Antioxidant activities and ${\beta}$-glucan contents of wild mushrooms in Korea. J Mushrooms 17: 144-151.
  3. Asakawa Y, Hashimoto T, Mizuno Y, Tori M, Fukazawa Y. 1992. Cryptoporic acid A-G, drimane-types sesquiterpenoid esters of isocitric acid from Cryptoporus volvatus. Phytochemistry 31: 579-592. https://doi.org/10.1016/0031-9422(92)90042-O
  4. Barros L, Baptista P, Estevinho LM, Ferreira ICFR. 2007. Effects of fruiting body maturity stage on chemical composition and antimicrobial activity of Lacarius sp. mushrooms. J Agri Food Chem 55: 4781-4788. https://doi.org/10.1021/jf070407o
  5. Bazer FW, Song GH, Kin JY. Erikson DW, Johnson GA, Burghardt RC, Gao H, Carey Satterfield M, Spencer TE, Wu G. 2012. Mechanistic mammalian target of rapamycin (MTOR) cell signaling: effects of select nutrients and secreted phosphoprotein 1 on development of mammalian conceptuses. Mol Cell Endocrinol 354: 22-33. https://doi.org/10.1016/j.mce.2011.08.026
  6. Beluhan S, Ranogajec A. 2011. Chemical composition and nonvolatile components of Croatian wild edible mushrooms. Food Chem 124: 1076-1082. https://doi.org/10.1016/j.foodchem.2010.07.081
  7. Casal S, Oliveria MB, Ferreira MA. 2000. Gas chromatographic quantification of amino acid enantiomers in food matrices by their N (O,S)-ethoxycarbonyl heptafluorobutyl esterderivatives. J Chromatogr A 866: 221-230. https://doi.org/10.1016/S0021-9673(99)01105-X
  8. Chang ST, Miles PG. 1989. Mushroom science in "Edible mushrooms and their cultivation" CRC Press, Inc. pp. 3-28.
  9. Cho JH, Park HS, Han JG, Lee GY, Sung GH, Jhune CS. 2014. Comparative analysis of anti-oxidant effects and polyphenol contents of the fruiting bodies in oyster mushrooms. J Mushroom Sci Prod 12: 311-315. https://doi.org/10.14480/JM.2014.12.4.311
  10. Cho JH, Noh HJ, Kang DH, Lee JY, Lee MJ, Park HS, Sung GH, Jhune CS. 2012. Comparative analysis of amino acid contents of the fruiting bodies in Ganoderma spp. J Mushrooms Sci 10: 208-215.
  11. Dai ZL, Li XL, Xi PB. Zhang J, Wu G, Zhu WY. 2012. Regulatory role for L-arginine in the utilization of amino acids by pig small-intestinal bacteria. Amino Acids 43: 233-244. https://doi.org/10.1007/s00726-011-1067-z
  12. Daniel JS, Steven AC. 1993. Sensitive analysis of cystine/cysteine using 6-aninoquinoquinoly-N-hydroxysuccinimidy carbamate (AQC) derivatives. Tech Protein Chem 4: 299-306.
  13. Dillon EL. 2012. Nutritionally essential amino acids and metabolic signaling in aging. Amino Acids doi:10.1007/s00726-012-1438-0.
  14. Eghianruwa Q, Odekanyin O, Kuku A. 2011. Physicochemical properties and acute toxicity studies of a lectin from the saline extract of the fruiting bodies of the shiitake mushroom, Lentinula edodes (Berk). Inter J Biochem Mol Biol 2: 309-317.
  15. Han Sk, Cho JW, Cho HJ, Kim HJ, Lee YM. 2013. A field guide to mushrooms. Korean National Arboretum, GeoBook Publishing Co., Seoul.
  16. Hong JS, Kim YH, Kim MK, Sohn HS. 1989. Contents of free amino acids and total amino acids in Agaricus bisporus, Pleurotus ostreatus and Lentinus edodes. Korean J Food Sci Technol 55: 466-475.
  17. Hou YQ, Wang L, Zhang W. Yang Z, Ding B, Zhu H, Liu Y, Qiu Y, Yin Y, Wu G. 2012. Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids 43: 1233-1242. https://doi.org/10.1007/s00726-011-1191-9
  18. Jhune CS, Park HS, Kong WS, Lee CJ, Lee KH, Cho JH. 2014. Changes in the amino acid contents of fruiting body with growing temperature of common mushroom, Agaricus bisporus. J Mushrooms 12: 293-298. https://doi.org/10.14480/JM.2014.12.4.293
  19. Jung HS, Park YN, Yoo YB, Jeon DH, Park KM. 2013. Analysis of nutritional contents and physiological activities of Neolentinus lepideus. J Mushrooms Sci Prod 11: 261-268. https://doi.org/10.14480/JM.2013.11.4.261
  20. Kim KJ, Im SB, Yun KW, Je HS, Ban SE, Jin SW, Jeong SW, Koh YW, Cho IK, Seo KS. 2017. Content of proximate compositions, free sugars, amino acids, and minerals in five Lentinula edodes cultivars collected in Korea. J Mushrooms 15: 216-222.
  21. Kim JT, Kim MJ, Jhune CS, Shin PG, Oh YL, Yoo YB, Suh JS, Kong WS. 2014. Comparison of amino acid and free amino acid contents between cap and stipe in Flammulina velutipes and Pleurotus ostreatus. J Mushrooms 12: 341-349. https://doi.org/10.14480/JM.2014.12.4.341
  22. Kim JY, Burghardt RC, Wu G, Johnson GA, Spencer TE, Bazer FW. 2011. Select nutrients in the ovine uterine lumen: VII. Effects of arginine, leucine, glutamine, and glucose on trophectoderm cell signaling, proliferation, and migration. Biol Reprod 84: 62-69. https://doi.org/10.1095/biolreprod.110.085738
  23. Kwon HN, Choi CB. 2018. Comparison of free amino acids, anserine, and carnosine contents of beef according to the country of origin and marbling score. J Korean Soc Food Sci Nutr 47: 357-362. https://doi.org/10.3746/jkfn.2018.47.3.357
  24. Kwon JH, Byun MW, Cho HO, Kim YJ. 1987. Effect of chemical fumigant and ${\gamma}$-rays on the physicochemical properties of dried oak mushrooms. Kor J Food Sci Technol 19: 273-278.
  25. Manzi P, Aguzzi A, Pizzoferrato L. 2001. Nutritional value of mushrooms widely consumed in Italy. Food Chem 73: 321-325. https://doi.org/10.1016/S0308-8146(00)00304-6
  26. Mau JL, Lin HC, Chen CC. 2001. Non-volatile components of several medicinal mushrooms. Food Res Int 34: 521-526. https://doi.org/10.1016/S0963-9969(01)00067-9
  27. Noh HJ, Choi SI, Lee KH, Jang KY, Cho JH, Sung GH, Kim GS, Lee SE, Kim SY. 2011. Anti-inflammatory effects of mushroom extracts in Korea. J Mushroom Sci Pro 9: 84-86.
  28. Park YA, Bak WC, Ka KH, Koo CD. 2017. Comparative analysis of amino acid content of Lentinula edodes, a new variety of shiitake mushroom, in 'Poongnyunko'. J Mushrooms Sci 15: 31-37. https://doi.org/10.14480/JM.2017.15.1.31
  29. Park WH, Lee JH. 2011. New wild fungi of Korea. Kyohak Publishing Co., Ltd.
  30. Palmer RM, Rees DD, Ashton DS, Moncada S. 1988. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophysic Res Commun 159: 1251-1256.
  31. Rohr CO, Levin LMN, Mentaberry AN, Wirth SA. 2013. A first insight into Pycnoporus sanguineus BAFC 2126 transcriptome. PLOS one 8: e81033. https://doi.org/10.1371/journal.pone.0081033
  32. Sanyal T, Ghosh SK. 2019. Anti-cancer property of Lenzites betulina (L) Fr. on cervical cancer cell lines and its antitumor effect on HeLa-implanted mice. BioRxiv.
  33. Wang JJ, Wu ZL, Li DF. 2012. Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 17: 282-301. https://doi.org/10.1089/ars.2011.4381
  34. Wen CN, Hu DB, Bai X, Wang F, Li ZH, Feng T. 2016. Chemical constituents from fruiting bodies of basidiomycete Perenniporia subacida. Fitoterapia 109: 179-184. https://doi.org/10.1016/j.fitote.2016.01.006
  35. Wu ZY. 1990. Xin-Hua compendium of materia medica. Shanghai Science and Technology Publishing House, Shanghai.
  36. Yang JH, Lin HC, Mau JL. 2001. Non-volatile taste components of several commercial mushrooms. Food Chem 72: 465-471. https://doi.org/10.1016/S0308-8146(00)00262-4