Directed evolution을 이용한 (S)-Ketoprofen ethlyester의 광학분활용 Esterase의 특성 개량

  • 김승범 (아주대학교 분자과학기술학과) ;
  • 김지희 (아주대학교 분자과학기술학과) ;
  • 유연우 (아주대학교 분자과학기술학과)
  • Published : 2003.04.11

Abstract

As for the purpose, we first introduce an random mutation into wild-type gene to expand a mutation space, and then further recombine the mutant genes by staggered extension process PCR. As a result, we obtained the best clones 6-52 that showed a high activity and stability, from a round of error prone and staggered extension process PCR. The purified enzyme showed a similar pH stability to the wild-type enzyme and reveal a slightly high optimum pH at 12. In the optimum temperature, an identical dependency was also showed and a quite high stability in the thermal stability was obtained. Along with this, the enzyme was also stable at a reaction that supplement with a 15 % of ethanol as an additive. The addition of other solvents and surfactants did not improve the reaction and thus resulted in a similar profile to those of wild-type enzyme. The specific activity on the target compound rac-ketoprofen ethyl ester was calculated to be about 85, 000 unit, and the kinetic constants Km and Vmax were determined to be 0.2 mM and 90 mM/mg-protein/min respectively. The deduced amino acid alignment with the wild type enzyme revealed five mutations at L120P, I208V, T249A, D287H and T357A. Based on these observations, the site directed mutagenesis to delineate the mutagenic effect is under progress.

Keywords