Browse > Article
http://dx.doi.org/10.4490/algae.2013.28.1.121

Phycobilisome composition in Chondrus crispus (Gigartinales, Rhodophyta) from a wild type strain and its vegetatively derived green mutant  

Cornish, M. Lynn (Acadian Seaplants Ltd.)
O' Leary, Stephen J.B. (National Research Council Canada, Aquatic & Crop Resource Development Portfolio)
Garbary, David J. (Department of Biology, St. Francis Xavier University)
Publication Information
ALGAE / v.28, no.1, 2013 , pp. 121-129 More about this Journal
Abstract
Intact phycobilisomes from a wild-type red Chondrus crispus and its vegetatively derived green mutant were isolated by centrifugation through a discontinuous sucrose density gradient. Pigment composition was subsequently characterized by spectrophotometry. Vegetative thalli of the two strains grown together for six months in the laboratory resulted in different pigment profiles. Two pigmented phycobilisome bands appeared in the sucrose gradient of the wild-type alga, a purple coloured one, and a pink one, whereas only a single blue band appeared in the gradient of the green mutant. Spectrophotometric and fluorescence analyses identified the phycobiliprotein composition of the purple band as the typical phycoerythrin-phycocyanin-allophycocyanin complement in the wild-type, but there was no detectable phycoerythrin present in the blue band of the green mutant. Sodium dodecyl sulphate, preparative polyacrylamide gel electrophoresis analysis confirmed the presence of allophycocyanin subunits in all extracts, but firm evidence of an R-phycoerythrin linker polypeptide in the blue band was missing. These results highlight the ability of C. crispus to adapt to a phycoerythrin deficiency by adjusting light harvesting pigment ratios.
Keywords
Chondrus crispus; green mutant; phycobilisomes; phycoerythrin; pigmentation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu, L. -N., Elmalk, A. T., Aartsma, T. J., Thomas, J. -C., Lamers, G. E. M., Zhou, B. -C. & Zhang, Y. -Z. 2008. Light-induced energetic decoupling as a mechanism for phycobilisome-related energy dissipation in red algae: a single molecule study. PLoS ONE 3:e3134.   DOI   ScienceOn
2 Luder, U. H., Knoetzel, J. & Wiencke, C. 2001. Two forms of phycobilisomes in the Antarctic red macroalga Palmaria decipiens (Palmariales, Florideophyceae). Physiol. Plant. 112:572-581.   DOI   ScienceOn
3 Ma, J. H. & Miura A. 1984. Observations on the nuclear division in the conchospores of and their germlings in Porphyra yezoensis Ueda. Jpn. J. Phycol. 32:373-378.
4 McLachlan, J. 1973. Growth media-marine. In Stein, J. R. (Ed.) Handbook of Phycological Methods, Culture Methods and Growth Measurements. Cambridge University Press, New York, pp. 25-51.
5 Mitman, G. G. & van der Meer, J. P. 1994. Meiosis, blade development, and sex determination in Porphyra purpurea (Rhodophyta). J. Phycol. 30:147-159.   DOI   ScienceOn
6 Niwa, K. 2010. Genetic analysis of artificial green and red mutants of Porphyra yezoensis Ueda (Bangiales, Rhodophyta). Aquaculture 308:6-12.   DOI   ScienceOn
7 Niwa, K. & Abe, T. 2012. Chimeras with mosaic pattern in archeospore germlings of Pyropia yezoensis Ueda (Bangiales, Rhodophyta). J. Phycol. 48:706-709.   DOI   ScienceOn
8 Niwa, K., Hayashi, Y., Abe, T. & Aruga, Y. 2009. Induction and isolation of pigmentation mutants of Porphyra yezoensis (Bangiales, Rhodophyta) by heavy-ion beam irradiation. Phycol. Res. 57:194-202.   DOI   ScienceOn
9 Gray, B. H. & Gantt, E. 1975. Spectral properties of phycobilisomes and phycobiliproteins from the blue-green alga-Nostoc sp. Photochem. Photobiol. 21:121-128.   DOI   ScienceOn
10 Grossman, A. R., Schaefer, M. R., Chiang, G. G. & Collier, J. L. 1993. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol. Rev. 57:725-749.
11 Guimaraes, M., Plastino, E. M. & Destombe, C. 2003. Green mutant frequency in natural populations of Gracilaria domingensis (Gracilariales, Rhodophyta) from Brazil. Eur. J. Phycol. 38:165-169.   DOI
12 Ivanova K. G., Stankova, K. G., Nikolov, V. N., Georgieva, R. T., Minkova, K. M., Gigova, L. G., Rupova, I. T. & Boteva, R. N. 2010. The biliprotein C-phycocyanin modulates the early radiation response: a pilot study. Mutat. Res. 695:40-45.   DOI   ScienceOn
13 Kursar, T. A., van der Meer, J. & Alberte, R. S. 1983. Light-harvesting system of the red alga Gracilaria tikvahiae: I. Biochemical analyses of pigment mutations. Plant Physiol. 73:353-360.   DOI   ScienceOn
14 Lee, R. E. 2008. Phycology. 4th ed. Cambridge University Press, New York, 561 pp.
15 Liu, L. -N., Chen, X. -L., Zhang, Y. -Z. & Zhou, B. -C. 2005. Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. Biochim. Biophys. Acta 1708:133-142.   DOI   ScienceOn
16 Bozzola, J. J. & Russell, L. D. 1999. Electron microscopy. 2nd ed. Jones and Bartlett Publishers, Mississauga, ON, 655 pp.
17 Algarra, P., Thomas, J. -C. & Mousseau, A. 1990. Phycobilisome heterogeneity in the red alga Porphyra umbilicalis. Plant Physiol. 92:570-576.   DOI   ScienceOn
18 Arteni, A. A., Liu, L. -N., Aartsma, T. J., Zhang, Y. -Z., Zhou, B. -C. & Boekema, E. J. 2008. Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum. Photosynth. Res. 95:169-174.   DOI
19 Beer, S. & Eshel, A. 1985. Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Aust. J. Mar. Freshw. Res. 36:785-792.   DOI
20 Costa, V. L. & Plastino, E. M. 2011. Color inheritance and pigment characterization of red (wild-type), greenish-brown, and green strains of Gracilaria birdiae (Gracilariales, Rhodophyta). J. Appl. Phycol. 23:599-605.   DOI
21 Farooq, S. M., Ebrahim, A. S., Subramhanya, K. H., Sakthivel, R., Rajesh, N. G. & Varalakshmi, P. 2006. Oxalate mediated nephronal impairment and its inhibition by c-phycocyanin: a study on urolithic rats. Mol. Cell. Biochem. 284:95-101.   DOI
22 Gantt, E. & Lipschultz, C. A. 1972. Phycobilisomes of Porphyridium cruentum. I. Isolation. J. Cell Biol. 54:313-324.   DOI
23 Gantt, E., Lipschultz, C. A., Grabowski, J. & Zimmerman, B. K. 1979. Phycobilisomes from the blue-green and red algae: isolation criteria and dissociation characteristics. Plant Physiol. 63:615-620.   DOI   ScienceOn
24 Glazer, A. N. 1994. Phycobiliproteins: a family of valuable, widely used fluorophores. J. Appl. Phycol. 6:105-112.   DOI   ScienceOn
25 Sekar, S. & Chandramohan, M. 2008. Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J. Appl. Phycol. 20:113-136.   DOI
26 Plastino, E. M., Guimaraes, M., Matioli, S. R. & Oliveira, E. C. 1999. Codominant inheritance of polymorphic color variants of Gracilaria domingensis (Gracilariales, Rhodophyta). Genet. Mol. Biol. 22:105-108.   DOI   ScienceOn
27 Plastino, E. M., Ursi, S. & Fujii, M. T. 2004. Color inheritance, pigment characterization, and growth of a rare light green strain of Gracilaria birdiae (Gracilariales, Rhodophyta). Phycol. Res. 52:45-52.   DOI
28 Pueschel, C. M. & van der Meer, J. P. 1984. Ultrastructural characterization of a pigment mutant of the red alga Palmaria palmata. Can. J. Bot. 62:1101-1107.   DOI
29 Shi, F., Qin, S. & Wang, Y. -C. 2011. The coevolution of phycobilisomes: molecular structure adapting to functional evolution. Comp. Funct. Genomics 2011:article ID 230236.
30 Staples, L. S., Shacklock, P. F. & Craigie, J. S. 1995. Rapid growth of clones of the red alga Chondrus crispus: applications in assays of toxic substances and in physiological studies. Mar. Biol. 122:471-477.   DOI
31 Su, H. -N., Xie, B. -B., Chen, X. -L., Wang, J. -X., Zhang, X. -Y., Zhou, B. -C. & Zhang, Y. -Z. 2010a. Efficient separation and purification of allophycocyanin from Spirulina (Arthrospira) platensis. J. Appl. Phycol. 22:65-70.   DOI
32 Su, H. -N., Xie, B. -B., Zhang, X. -Y., Zhou, B. -C. & Zhang, Y. -Z. 2010b. The supramolecular architecture, function, and regulation of thylakoid membranes in red algae: an overview. Photosynth. Res. 106:73-87.   DOI
33 Talarico, L. 1996. Phycobiliproteins and phycobilisomes in red algae: adaptive responses to light. Sci. Mar. 60(Suppl 1):205-222.
34 Yan, X. -H., Fujita, Y. & Aruga, Y. 2000. Induction and characterization of pigmentation mutants in Porphyra yezoensis (Bangiales, Rhodophyta). J. Appl. Phycol. 12:69-81.   DOI
35 van der Meer, J. P. 1981. The inheritance of spontaneous pigment mutations in Chondrus crispus Stackh. Proc. N. S. Inst. Sci. 31:187-192.
36 van der Meer, J. P. 1990. Genetics. In Cole, K. M. & Sheath, R. G. (Eds.) Biology of the Red Algae. Cambridge University Press, Cambridge, pp. 103-121.
37 van der Meer, J. P. & Todd, E. R. 1980. The life history of Pal-maria palmata in culture: a new type for the Rhodophyta. Can. J. Bot. 58:1250-1256.   DOI
38 Yan, X. -H., Li, L. & Aruga, Y. S. 2005. Genetic analysis of the position of meiosis in Porphyra haitanensis Chang et Zheng (Bangiales, Rhodophyta). J. Appl. Phycol. 17:467-473.   DOI
39 Yokoya, N. S., Necchi, O. Jr., Martins, A. P., Gonzalez, S. F. & Plastino, E. M. 2007. Growth responses and photosynthetic characteristics of wild and phycoerythrin-deficient strains of Hypnea musciformis (Rhodophyta). J. Appl. Phycol. 19:197-205.   DOI