DOI QR코드

DOI QR Code

Phycobilisome composition in Chondrus crispus (Gigartinales, Rhodophyta) from a wild type strain and its vegetatively derived green mutant

  • Cornish, M. Lynn (Acadian Seaplants Ltd.) ;
  • O' Leary, Stephen J.B. (National Research Council Canada, Aquatic & Crop Resource Development Portfolio) ;
  • Garbary, David J. (Department of Biology, St. Francis Xavier University)
  • Received : 2013.01.15
  • Accepted : 2013.02.17
  • Published : 2013.03.15

Abstract

Intact phycobilisomes from a wild-type red Chondrus crispus and its vegetatively derived green mutant were isolated by centrifugation through a discontinuous sucrose density gradient. Pigment composition was subsequently characterized by spectrophotometry. Vegetative thalli of the two strains grown together for six months in the laboratory resulted in different pigment profiles. Two pigmented phycobilisome bands appeared in the sucrose gradient of the wild-type alga, a purple coloured one, and a pink one, whereas only a single blue band appeared in the gradient of the green mutant. Spectrophotometric and fluorescence analyses identified the phycobiliprotein composition of the purple band as the typical phycoerythrin-phycocyanin-allophycocyanin complement in the wild-type, but there was no detectable phycoerythrin present in the blue band of the green mutant. Sodium dodecyl sulphate, preparative polyacrylamide gel electrophoresis analysis confirmed the presence of allophycocyanin subunits in all extracts, but firm evidence of an R-phycoerythrin linker polypeptide in the blue band was missing. These results highlight the ability of C. crispus to adapt to a phycoerythrin deficiency by adjusting light harvesting pigment ratios.

Keywords

References

  1. Algarra, P., Thomas, J. -C. & Mousseau, A. 1990. Phycobilisome heterogeneity in the red alga Porphyra umbilicalis. Plant Physiol. 92:570-576. https://doi.org/10.1104/pp.92.3.570
  2. Arteni, A. A., Liu, L. -N., Aartsma, T. J., Zhang, Y. -Z., Zhou, B. -C. & Boekema, E. J. 2008. Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum. Photosynth. Res. 95:169-174. https://doi.org/10.1007/s11120-007-9264-z
  3. Beer, S. & Eshel, A. 1985. Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Aust. J. Mar. Freshw. Res. 36:785-792. https://doi.org/10.1071/MF9850785
  4. Bozzola, J. J. & Russell, L. D. 1999. Electron microscopy. 2nd ed. Jones and Bartlett Publishers, Mississauga, ON, 655 pp.
  5. Costa, V. L. & Plastino, E. M. 2011. Color inheritance and pigment characterization of red (wild-type), greenish-brown, and green strains of Gracilaria birdiae (Gracilariales, Rhodophyta). J. Appl. Phycol. 23:599-605. https://doi.org/10.1007/s10811-010-9642-3
  6. Farooq, S. M., Ebrahim, A. S., Subramhanya, K. H., Sakthivel, R., Rajesh, N. G. & Varalakshmi, P. 2006. Oxalate mediated nephronal impairment and its inhibition by c-phycocyanin: a study on urolithic rats. Mol. Cell. Biochem. 284:95-101. https://doi.org/10.1007/s11010-005-9019-0
  7. Gantt, E. & Lipschultz, C. A. 1972. Phycobilisomes of Porphyridium cruentum. I. Isolation. J. Cell Biol. 54:313-324. https://doi.org/10.1083/jcb.54.2.313
  8. Gantt, E., Lipschultz, C. A., Grabowski, J. & Zimmerman, B. K. 1979. Phycobilisomes from the blue-green and red algae: isolation criteria and dissociation characteristics. Plant Physiol. 63:615-620. https://doi.org/10.1104/pp.63.4.615
  9. Glazer, A. N. 1994. Phycobiliproteins: a family of valuable, widely used fluorophores. J. Appl. Phycol. 6:105-112. https://doi.org/10.1007/BF02186064
  10. Gray, B. H. & Gantt, E. 1975. Spectral properties of phycobilisomes and phycobiliproteins from the blue-green alga-Nostoc sp. Photochem. Photobiol. 21:121-128. https://doi.org/10.1111/j.1751-1097.1975.tb06638.x
  11. Grossman, A. R., Schaefer, M. R., Chiang, G. G. & Collier, J. L. 1993. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol. Rev. 57:725-749.
  12. Guimaraes, M., Plastino, E. M. & Destombe, C. 2003. Green mutant frequency in natural populations of Gracilaria domingensis (Gracilariales, Rhodophyta) from Brazil. Eur. J. Phycol. 38:165-169. https://doi.org/10.1080/0967026031000085878
  13. Ivanova K. G., Stankova, K. G., Nikolov, V. N., Georgieva, R. T., Minkova, K. M., Gigova, L. G., Rupova, I. T. & Boteva, R. N. 2010. The biliprotein C-phycocyanin modulates the early radiation response: a pilot study. Mutat. Res. 695:40-45. https://doi.org/10.1016/j.mrgentox.2009.11.002
  14. Kursar, T. A., van der Meer, J. & Alberte, R. S. 1983. Light-harvesting system of the red alga Gracilaria tikvahiae: I. Biochemical analyses of pigment mutations. Plant Physiol. 73:353-360. https://doi.org/10.1104/pp.73.2.353
  15. Lee, R. E. 2008. Phycology. 4th ed. Cambridge University Press, New York, 561 pp.
  16. Liu, L. -N., Chen, X. -L., Zhang, Y. -Z. & Zhou, B. -C. 2005. Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. Biochim. Biophys. Acta 1708:133-142. https://doi.org/10.1016/j.bbabio.2005.04.001
  17. Liu, L. -N., Elmalk, A. T., Aartsma, T. J., Thomas, J. -C., Lamers, G. E. M., Zhou, B. -C. & Zhang, Y. -Z. 2008. Light-induced energetic decoupling as a mechanism for phycobilisome-related energy dissipation in red algae: a single molecule study. PLoS ONE 3:e3134. https://doi.org/10.1371/journal.pone.0003134
  18. Luder, U. H., Knoetzel, J. & Wiencke, C. 2001. Two forms of phycobilisomes in the Antarctic red macroalga Palmaria decipiens (Palmariales, Florideophyceae). Physiol. Plant. 112:572-581. https://doi.org/10.1034/j.1399-3054.2001.1120416.x
  19. Ma, J. H. & Miura A. 1984. Observations on the nuclear division in the conchospores of and their germlings in Porphyra yezoensis Ueda. Jpn. J. Phycol. 32:373-378.
  20. McLachlan, J. 1973. Growth media-marine. In Stein, J. R. (Ed.) Handbook of Phycological Methods, Culture Methods and Growth Measurements. Cambridge University Press, New York, pp. 25-51.
  21. Mitman, G. G. & van der Meer, J. P. 1994. Meiosis, blade development, and sex determination in Porphyra purpurea (Rhodophyta). J. Phycol. 30:147-159. https://doi.org/10.1111/j.0022-3646.1994.00147.x
  22. Niwa, K. 2010. Genetic analysis of artificial green and red mutants of Porphyra yezoensis Ueda (Bangiales, Rhodophyta). Aquaculture 308:6-12. https://doi.org/10.1016/j.aquaculture.2010.08.007
  23. Niwa, K. & Abe, T. 2012. Chimeras with mosaic pattern in archeospore germlings of Pyropia yezoensis Ueda (Bangiales, Rhodophyta). J. Phycol. 48:706-709. https://doi.org/10.1111/j.1529-8817.2012.01143.x
  24. Niwa, K., Hayashi, Y., Abe, T. & Aruga, Y. 2009. Induction and isolation of pigmentation mutants of Porphyra yezoensis (Bangiales, Rhodophyta) by heavy-ion beam irradiation. Phycol. Res. 57:194-202. https://doi.org/10.1111/j.1440-1835.2009.00539.x
  25. Plastino, E. M., Guimaraes, M., Matioli, S. R. & Oliveira, E. C. 1999. Codominant inheritance of polymorphic color variants of Gracilaria domingensis (Gracilariales, Rhodophyta). Genet. Mol. Biol. 22:105-108. https://doi.org/10.1590/S1415-47571999000100020
  26. Plastino, E. M., Ursi, S. & Fujii, M. T. 2004. Color inheritance, pigment characterization, and growth of a rare light green strain of Gracilaria birdiae (Gracilariales, Rhodophyta). Phycol. Res. 52:45-52. https://doi.org/10.1111/j.1440-1835.2004.tb00314.x
  27. Pueschel, C. M. & van der Meer, J. P. 1984. Ultrastructural characterization of a pigment mutant of the red alga Palmaria palmata. Can. J. Bot. 62:1101-1107. https://doi.org/10.1139/b84-153
  28. Sekar, S. & Chandramohan, M. 2008. Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J. Appl. Phycol. 20:113-136. https://doi.org/10.1007/s10811-007-9188-1
  29. Shi, F., Qin, S. & Wang, Y. -C. 2011. The coevolution of phycobilisomes: molecular structure adapting to functional evolution. Comp. Funct. Genomics 2011:article ID 230236.
  30. Staples, L. S., Shacklock, P. F. & Craigie, J. S. 1995. Rapid growth of clones of the red alga Chondrus crispus: applications in assays of toxic substances and in physiological studies. Mar. Biol. 122:471-477. https://doi.org/10.1007/BF00350881
  31. Su, H. -N., Xie, B. -B., Chen, X. -L., Wang, J. -X., Zhang, X. -Y., Zhou, B. -C. & Zhang, Y. -Z. 2010a. Efficient separation and purification of allophycocyanin from Spirulina (Arthrospira) platensis. J. Appl. Phycol. 22:65-70. https://doi.org/10.1007/s10811-009-9427-8
  32. Su, H. -N., Xie, B. -B., Zhang, X. -Y., Zhou, B. -C. & Zhang, Y. -Z. 2010b. The supramolecular architecture, function, and regulation of thylakoid membranes in red algae: an overview. Photosynth. Res. 106:73-87. https://doi.org/10.1007/s11120-010-9560-x
  33. Talarico, L. 1996. Phycobiliproteins and phycobilisomes in red algae: adaptive responses to light. Sci. Mar. 60(Suppl 1):205-222.
  34. van der Meer, J. P. 1981. The inheritance of spontaneous pigment mutations in Chondrus crispus Stackh. Proc. N. S. Inst. Sci. 31:187-192.
  35. van der Meer, J. P. 1990. Genetics. In Cole, K. M. & Sheath, R. G. (Eds.) Biology of the Red Algae. Cambridge University Press, Cambridge, pp. 103-121.
  36. van der Meer, J. P. & Todd, E. R. 1980. The life history of Pal-maria palmata in culture: a new type for the Rhodophyta. Can. J. Bot. 58:1250-1256. https://doi.org/10.1139/b80-155
  37. Yan, X. -H., Fujita, Y. & Aruga, Y. 2000. Induction and characterization of pigmentation mutants in Porphyra yezoensis (Bangiales, Rhodophyta). J. Appl. Phycol. 12:69-81. https://doi.org/10.1023/A:1008129119065
  38. Yan, X. -H., Li, L. & Aruga, Y. S. 2005. Genetic analysis of the position of meiosis in Porphyra haitanensis Chang et Zheng (Bangiales, Rhodophyta). J. Appl. Phycol. 17:467-473. https://doi.org/10.1007/s10811-005-2752-7
  39. Yokoya, N. S., Necchi, O. Jr., Martins, A. P., Gonzalez, S. F. & Plastino, E. M. 2007. Growth responses and photosynthetic characteristics of wild and phycoerythrin-deficient strains of Hypnea musciformis (Rhodophyta). J. Appl. Phycol. 19:197-205. https://doi.org/10.1007/s10811-006-9124-9

Cited by

  1. The freshwater red alga Batrachospermum turfosum (Florideophyceae) can acclimate to a wide range of light and temperature conditions vol.52, pp.2, 2017, https://doi.org/10.1080/09670262.2016.1274430
  2. The Use of Photographic Color Information for High-Throughput Phenotyping of Pigment Composition in Agarophyton vermiculophyllum (Ohmi) Gurgel, J.N.Norris & Fredericq vol.40, pp.7, 2013, https://doi.org/10.5252/cryptogamie-algologie2019v40a7