• Title/Summary/Keyword: Wide Band-gap반도체

Search Result 29, Processing Time 0.027 seconds

Materials properties of wide band-gap semiconductors and their application to high speed electronic power devices (Wide band-gap반도체의 물성 및 고주파용 전력소자의 응용)

  • 신무환
    • Electrical & Electronic Materials
    • /
    • v.9 no.9
    • /
    • pp.969-977
    • /
    • 1996
  • 본고에서는 여러가지 Wide Band-gap중에서 특히 최근에 많은 관심을 끌고 있는 GaN와 4H-SiC, 6H0SiC의 전자기적 물성을 소개하고 현재 이들로부터 제작된 prototype소자들의 성능을 비교함으로써 그 발전현황을 알아보기로 한다. 본고에서 관심을 두는 소자분야는 광전소자(optoelectronic devices)라기보다는 고주파 고출력용 전력소자임을 밝힌다. 아울러 GaN로부터 제작된 MESFET(MEtal Semiconductor Field-Effect Transistor)소자의 고주파 대역에서의 Large-Signal특성을 Device/Circuit Model을 통하여 실험치와 비교하여보고 이로부터 최적화된 channel 구조를 갖는 소자구조에서의 RF특성을 조사한다.

  • PDF

Trends of Power Semiconductor Device (전력 반도체의 개발 동향)

  • Yun, Chong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.3-6
    • /
    • 2004
  • Power semiconductor devices are being compact, high performance and intelligent thanks to recent remarkable developments of silicon design, process and related packaging technologies. Developments of MOS-gate transistors such as MOSFET and IGBT are dominant thanks to their advantages on high speed operation. In conjunction with package technology, silicon technologies such as trench, charge balance and NPT will support future power semiconductors. In addition, wide band gap material such as SiC and GaN are being studies for next generation power semiconductor devices.

  • PDF

Status of Silicon Carbide as a Semiconductor Device (SiC 반도체 기술현황과 전망)

  • Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.13-16
    • /
    • 2001
  • 반도체 동작시에 파워 손실을 최소화하는 것은 2000년대의 에너지, 산업전자, 정보통신 산업분야에서의 가장 주요한 요구 사항중의 하나이다. 실리콘계 반도체 소자들은 완전히 새로운 구동기구의 소자가 개발되지 않는 한, 실리콘 재료의 낮은 열전도율이나 낮은 절연파괴전계와 같은 물리적 특성한계 때문에 이러한 요구를 만족시키는 것이 불가능한 실정이다. 따라서 21세기를 위한 대안으로 고열전도융의 WBG(WideBand-Gap) 물질 그 중에서도 탄화규소(SiC) 반도체가 제시되고 있다. SiC 반도체는 실리콘에 비하여 밴드갭(band gap: $E_{g}$)이 높을 뿐만이 아니라 절연파괴강도 ($E_{B}$)가 한 자릿수 이상 그리고 전자의 포화 drift 속도, $V_{s}$ 및 열전도도 k가 3배 가량 크다. 따라서 SiC는 고온 동작 내지는 고내압, 대전류, 저손실 반도체를 제작하는데 아주 유리하다. 본고에서는 응용성이 넓고, 단결정 제조가 비교적 용이한 SiC 반도체의 기술현황에 대하여 살펴보고자 한다.

  • PDF

Status of Silicon Carbide as a Semiconductor Device (SiC 반도체 기술현황과 전망)

  • 김은동
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.13-16
    • /
    • 2001
  • 반도체 동작시에 파워 손실을 최소화하는 것은 2000년대의 에너지, 산업전자, 정보통신 산업분야에서의 가장 주요한 요구 사항중의 하나이다. 실리콘계 반도체 소자들은 완전히 새로운 구동기구의 소자가 개발되지 않는 한, 실리콘 재료의 낮은 열 전도율이나 낮은 절연파괴전계와 같은 물리적 특성한계 때문에 이러한 요구를 만족시키는 것이 불가능한 실정이다. 따라서 21세기를 위한 대안으로 고열전도율의 WBG(Wide Band-Gap) 물질 그 중에서도 탄화규소(SiC) 반도체가 제시되고 있다. SiC 반도체는 실리콘에 비하여 밴드 갭(band gap: E$_{g}$)이 높을 뿐만이 아니라 절연파괴강도(E$_{B}$)가 한 자릿수 이상 그리고 전자의 포화 drift 속도, v$_{s}$ 및 열전도도 k가 3배 가량 크다. 따라서 SiC는 고온 동작 내지는 고내압, 대전류, 저손실 반도체를 제작하는데 아주 유리하다. 본고에서는 응용성이 넓고, 단결정 제조가 비교적 용이한 SiC 반도체의 기술현황 에 대하여 살펴보고자 한다.

  • PDF

Status of Silicon Carbide as a Semiconductor Device (SiCqksehcp 기술현황과 전망)

  • 김은동
    • Electrical & Electronic Materials
    • /
    • v.14 no.12
    • /
    • pp.11-14
    • /
    • 2001
  • 반도체 동작시에 파워 손실을 최소화하는 것은 2000년대의 에너지, 산업전자, 정보통신 산업분야에서의 가장 주요한 요구 사항중의 하나이다. 실리콘계 반도체 소자들은 완전히 새로운 구동기구의 소자가 개발되지 않는 한, 실리콘 재료의 낮은 열전도율이나 낮은 절연파괴전계와 같은 물리적 특성한계 때문에 이러한 요구를 만족시키는 것이 불가능한 실정이다. 따라서 21세기를 위한 대안으로 고열전도율의 WBG(Wide Band-Gap) 물질 그 중에서도 탄화규소(SiC) 반도체가 제시되고 있다. SiC 반도체는 실리콘에 비하여 밴드 갭(band gap: E$_{g}$)이 높을 뿐만이 아니라 절연파괴강도(E$_{B}$)가 한 자릿수 이상 그리고 전자의 포화 drift 속도, V$_{s}$ 및 열전도도 k가 3배 가량 크다. 따라서 SiC는 고온 동작 내지는 고내압, 대전류, 저손실 반도체를 제작하는데 아주 유리하다. 본고에서는 응용성이 넓고, 단결정 제조가 비교적 용이한 SiC 반도체의 기술현황에 대하여 살펴보고자 한다.

  • PDF

Trends in Wide Band-gap Semiconductor Power Devices for Automotive, Power Conversion Modules and ETRI GaN Power Technology (자동차용 WBG 전력반도체 및 전력변환 모듈과 ETRI GaN 소자 기술)

  • Ko, S.C.;Chang, W.J.;Jung, D.Y.;Park, Y.R.;Jun, C.H.;Nam, E.S.
    • Electronics and Telecommunications Trends
    • /
    • v.29 no.6
    • /
    • pp.53-62
    • /
    • 2014
  • 본고는 최근 화두가 되고 있는 에너지 절감을 위해 고효율, 친환경의 WBG(Wide Band-Gap) 화합물반도체인 SiC(Silicon Carbide), GaN(Gallium Nitride) 전력반도체 소자 및 전력변환 모듈의 기술동향과 ETRI에서 연구개발 진행 중인 GaN 전력반도체 관련 기술에 대해 기술한다. WBG 전력반도체는 기존의 실리콘 전력반도체와 비교하여 열 특성 향상, 고속 스위칭, 고전압/고전류 특성 및 스위칭 손실 최소화 등이 가능하고 이에 따른 시스템의 소형화 및 전력효율 향상 효과를 얻을 수 있다. 특히, GaN 전력반도체 소자는 시장이 가장 넓게 형성되어 있는 900V 이하에 적용이 가능하며, 앞으로 시장이 커질 것으로 예상되는 HEV(Hybrid Electric Vehicle)/EV(Electric Vehicle)의 친환경 자동차에도 활용될 것으로 기대되고 있다. 본고는 최근의 일본과 미국에서의 WBG 전력반도체에 대한 관심 및 투자 방향과 GaN 전력반도체 소자에 대한 해외 기업의 업계동향에 대해서도 함께 살펴본다. 이러한 WBG 전력반도체에 대한 해외 선진업체의 산업동향과 더불어 ETRI에서 연구개발 중인 GaN 전력반도체 기술현황에 대해 전력소자 설계 및 제조공정, 패키징, 전력모듈 설계 제작 기술을 포함하여 기술한다.

  • PDF

A study on ESD Protection circuit based on 4H-SiC MOSFET (4H-SiC MOSFET기반 ESD보호회로에 관한 연구)

  • Seo, Jeong-Ju;Do, Kyoung-Il;Seo, Jeong-Ju;Kwon, Sang-Wook;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1202-1205
    • /
    • 2018
  • In this paper, we proposed ggNMOS based on 4H-SiC material and analyzed its electrical characteristics. 4H-SiC is a wide band-gap meterial, which is superior in area contrast and high voltage characteristics to Si material, and is attracting attention in the power semiconductor field. The proposed device has high robustness and strong snapback characteristics. The process consisted of SiC process and electrical characteristics were analyzed by TLP measurement equipment.

Ga2O3 Epi Growth by HVPE for Application of Power Semiconductors (전력 반도체 응용을 위한 HVPE법에 의한 Ga2O3 에피성장에 관한 연구)

  • Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.427-431
    • /
    • 2018
  • This research was worked about $Ga_2O_3$ Epi wafer that was one of the mose wide band gap semiconductors to be used power semiconductor industry. This wafer was grown $5.3{\mu}m$ thickness on Sn doped $Ga_2O_3$ Substrate by HVPE(Hydride Vapor Phase Epitaxy). Generally, we can fabricate 600V class power semiconductor devices when the thickness of compoound power semiconductor is $5{\mu}m$. but in case of $Ga_2O_3$ Epi wafer, we can obtain over 1000V class. As a result of J-V measurment of the grown $Ga_2O_3$ Epi wafer, we obtain $2.9-7.7m{\Omega}{\cdot}cm^2$ on resistance. Specially, in case of reverse, we comfirmed a little leakage current when the reverse voltage is over 200V.

Commercialization and Research Trends of Next Generation Power Devices SiC/GaN (차세대 파워디바이스 SiC/GaN의 산업화 및 학술연구동향)

  • Cho, Mann;Koo, Young-Duk
    • Journal of Energy Engineering
    • /
    • v.22 no.1
    • /
    • pp.58-81
    • /
    • 2013
  • Recently, the technological progress in manufacturing power devices based on wide bandgap materials, for example, silicon carbide(SiC) or gallium nitride(GaN), has resulted in a significant improvement of the operating-voltage range and switching speed and/or specific on resistance compared with silicon power devices. This paper will give an overview of the status on The Next generation Power Devices such as SiC/GaN with a focus on commercialization and research.

Recent Overview on Power Semiconductor Devices and Package Module Technology (차세대 전력반도체 소자 및 패키지 접합 기술)

  • Kim, Kyoung-Ho;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.15-22
    • /
    • 2019
  • In these days, importance of the power electronic devices and modules keeps increasing due to electric vehicles and energy saving requirements. However, current silicon-based power devices showed several limitations. Therefore, wide band gap (WBG) semiconductors such as SiC, GaN, and $Ga_2O_3$ have been developed to replace the silicon power devices. WBG devices show superior performances in terms of device operation in harsh environments such as higher temperatures, voltages and switching speed than silicon-based technology. In power devices, the reliability of the devices and module package is the critically important to guarantee the normal operation and lifetime of the devices. In this paper, we reviewed the recent trends of the power devices based on WBG semiconductors as well as expected future technology. We also presented an overview of the recent package module and fabrication technologies such as direct bonded copper and active metal brazing technology. In addition, the recent heat management technologies of the power modules, which should be improved due to the increased power density in high temperature environments, are described.