DOI QR코드

DOI QR Code

Ga2O3 Epi Growth by HVPE for Application of Power Semiconductors

전력 반도체 응용을 위한 HVPE법에 의한 Ga2O3 에피성장에 관한 연구

  • Kang, Ey Goo (Dept. of Energy IT Engineering, Far East University)
  • Received : 2018.06.12
  • Accepted : 2018.06.26
  • Published : 2018.06.30

Abstract

This research was worked about $Ga_2O_3$ Epi wafer that was one of the mose wide band gap semiconductors to be used power semiconductor industry. This wafer was grown $5.3{\mu}m$ thickness on Sn doped $Ga_2O_3$ Substrate by HVPE(Hydride Vapor Phase Epitaxy). Generally, we can fabricate 600V class power semiconductor devices when the thickness of compoound power semiconductor is $5{\mu}m$. but in case of $Ga_2O_3$ Epi wafer, we can obtain over 1000V class. As a result of J-V measurment of the grown $Ga_2O_3$ Epi wafer, we obtain $2.9-7.7m{\Omega}{\cdot}cm^2$ on resistance. Specially, in case of reverse, we comfirmed a little leakage current when the reverse voltage is over 200V.

본 논문에서는 최근 전력반도체 산업에서 활용되어지는 와이드밴드갭 반도체 중에 하나인 $Ga_2O_3$를 이용한 에피웨이퍼 성장에 관련되어 서술하였다. GaN 성장시 활용되어지는 HVPE법을 이용하여 Sn이 도핑된 $Ga_2O_3$ 기판웨이퍼에 평균 $5.3{\mu}m$ 두께로 성장시켰다. 일반적으로 화합물반도체의 에피 두께가 $5{\mu}m$일 경우 SiC의 경우 600V 전력반도체소자를 제작할 수 있으며, $Ga_2O_3$ 에피웨이퍼의 경우에는 1000V이상의 전력소자를 제작할 수 있다. 성장된 에피웨이퍼의 J-V 측정 결과 $2.9-7.7m{\Omega}{\cdot}cm^2$의 온저항을 얻을 수 있었으며, 역방향의 경우 상당히 높은 전압에서도 누설전류가 거의 없음을 알 수 있었다.

Keywords

References

  1. T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, and M. Higashiwaki, "Valence band ordering in ${\beta}-Ga2O3$ studied by polarized transmittance and reflectance spectroscopy," Jpn. J. Appl. Phys., vol. 54, no. 11, p. 112601, 2015.DOI:10.7567/JJAP.54.112601
  2. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, "Ga2O3 Schottky barrier diodes fabricated by using single-crystal ${\beta}-Ga2O3$ (010) substrates," IEEE Electron Device Lett., vol. 34, no. 4, pp. 493-495, 2013. DOI:10.1109/LED.2013.2244057
  3. M. Higashiwaki, K. Sasaki, K. Goto, K. Nomura, Q. T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, and S. Yamakoshi, "Ga2O3 Schottky barrier diodes with n−-Ga2O3 drift layers grown by HVPE," in Proc. 73rd IEEE Device Res. Conf., pp. 29-30, 2015. DOI:10.1109/DRC.2015.7175536
  4. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, "Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal ${\beta}-Ga2O3$ (010) substrates," Appl. Phys. Lett., vol. 100, no. 1, p. 013504, 2012. DOI:10.1063/1.3674287
  5. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, "Si-ion implantation doping in ${\beta}-Ga2O3$ and its application to fabrication of low-resistance ohmic contacts," Appl. Phys. Exp., vol. 6, no. 8, p. 086502, 2013.DOI:10.7567/APEX.6.086502
  6. M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, "Depletion-mode Ga2O3 MOS field-effect transistors on${\beta}-Ga2O3$ (010) substrates and temperature dependence of their device characteristics," Appl. P hys. Lett., vol. 103, no. 12, p. 123511, 2013. DOI:10.1063/1.4821858