• Title/Summary/Keyword: Wheel slippery

Search Result 17, Processing Time 0.026 seconds

Neural network based position estimation of mobile robot in slippery environment (Slip이 발생할 때 신경회로망을 이용한 이동로보트의 위치추정에 관한 연구)

  • 최동엽;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.133-138
    • /
    • 1993
  • This paper presents neural network based position estimation method in slippery environment as an approach to solve one of problems which are engaged in dead reckoning method. Position estimator is composed of slip detector and linear velocity estimator. Both of them are based on the fact that dynamic characteristic of mobile robot in slippery environment is different from the case without slip. To find out the dynamic relation among driving torque, angular acceleration of driving wheel and linear acceleration of mobile robot, accelerometer is used for measuring acceleration of mobile robot and neural network is used for dynamic system identifier in slippery environment.

  • PDF

A Study on the Adhesion Control using the Estimated Adhesion for Improving Traction Performance (견인능력 향상을 위한 추정점착력을 이용한 점착제어기법에 관한 연구)

  • Seo, Gwang-Deok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.12
    • /
    • pp.709-714
    • /
    • 1999
  • This paper is focused on the adhesion control method to improve traction efficiency using the estimated adhesion for railway propulsion system. Recently, the wheel slippery is frequently occurred due to light weight of train and power increasement of traction parts. This phenomenon occurs a traction loss and a poor ride comport. Therefore, the adhesion control which is able to prevent the slippery and to control the traction on a maximum adhesion is absolutely needed. This paper introduces typical methods for adhesion control and proposes two novel adhesion methods using the estimated adhesion.

  • PDF

WHEEL SLIP CONTROL WITH MOVING SLIDING SURFACE FOR TRACTION CONTROL SYSTEM

  • Chun, K.;Sunwoo, M.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.123-133
    • /
    • 2004
  • This paper describes a robust and fast wheel slip tracking control using a moving sliding surface technique. A traction control system (TCS) is the active safety system used to prevent the wheel slipping and thus improve acceleration performance, stability and steerability on slippery roads through the engine torque and/or brake torque control. This paper presents a wheel slip control for TCS through the engine torque control. The proposed controller can track a reference input wheel slip in a predetermined time. The design strategy investigated is based on a moving sliding surface that only contains the error between the reference input wheel slip and the actual wheel slip. The used moving sliding mode was originally designed to ensure that the states remain on a sliding surface, thereby achieving robustness and eliminating chattering. The improved robustness in driving is important due to changes, such as from dry road to wet road or vice versa which always happen in working conditions. Simulations are performed to demonstrate the effectiveness of the proposed moving sliding mode controller.

A Study on the Analysis of Pressure Characteristics of Hydraulic Modulator for Anti-Lock Brake System (미끄럼 방지 제동장치용 유압모듈레이터의 압력 특성 해석에 관한 연구)

  • Song, Chang-Seop;Yang, Hae-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.120-127
    • /
    • 1996
  • Anti-lock Brake System has been developed to reduce tendency for wheel lock and improve vehicle control during sudden braking on slippery road surfaces. This is achieved by controlling the braking pressure, avoiding wheel lock, while retaining handling and brake performance. This paper is concerned about pressurecharacteristics of hydraulic modulator. Experimental sets which is consists of hydraulic modulator, duty controller, pressure regulator, pressure senset is consuructed. System modelling and computer simulation are performed for comparison with experimental results. Brake wheel pressure are measured under various driving pulse. The result of experiment show fairly agreement with the simulation. As a result, it is known that wheel pressure is affected by duty ratio, orifice diameter through computer simulation.

  • PDF

Validation of a Vehicle Model and an ABS Controller with a Commercial Software Program (상용 소프트웨어를 이용한 차량 모델 및 ABS 제어기의 성능 평가)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.180-187
    • /
    • 2007
  • This paper presents a mathematical vehicle model that is designed to analyze the dynamic performance and to develop various safety control systems. Wheel slip controllers for ABS is also formulated to improve the vehicle response and to increase the safety on slippery road. Validation of the model and controller is performed by comparison with a commercial software package, CarSim. The result shows that performances of developed vehicle model are in good accordance with those of the CarSim on various driving conditions. Developed ABS controller is applied to the vehicle model and CarSim model, and it achieves good control performance. ABS controller improves lateral stability as well as longitudinal one when a vehicle is in turning maneuver on slippery road. A driver model is also designed to control steer angle of the vehicle model. It also shows good performance because the vehicle tracks the desired lane very well.

Set up of an antilocking-brake-system for the single wheel of passenger cars and brake test using a test rig (승용차의 single wheel에 대한 antilocking-brake-system의 구성 및 test rig을 이용한 제동실험)

  • 홍예선;지태수;고창복
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.36-45
    • /
    • 1990
  • In this study an antilocking-brake-system was set up for the single wheel of passenger cars. The control algorithm for the system was programmed by C-language and executed by a 16bit personal computer, which took the role of an electronic control unit. The performance of the antilocking-brake-system was tested using a test rig, which was specially designed and built up for the simulation of braking on the slippery road. The test results were satisfactory. Although the simulation method of the friction characteristics between the tire and the contact surface on the test rig appeared not to be absolutely suitable, the test rig allowed the basic investigation of the influence of the antilocking brake control on the wheel slip.

  • PDF

Development and Evaluation of ESP Systems for Enhancement of Vehicle Stability during Cornering (II) (차량의 선회시 주행 안정성 강화를 위한 ESP 시스템 개발 및 성능 평가 (II))

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1551-1556
    • /
    • 2006
  • Two yaw motion control systems that improve a vehicle lateral stability are proposed in this study: a rear wheel steering yaw motion controller (SESP) and an enhanced rear wheel steering yaw motion controller (ESESP). A SESP controls the rear wheels, while an ESESP steers the rear wheels and front outer wheel to allow the yaw rate to track the reference yaw rate. A 15 degree-of-freedom vehicle model, simplified steering system model, and driver model are used to evaluate the proposed SESP and ESESP. A robust anti-lock braking system (ABS) controller is also designed and developed. The performance of the SESP and ESESP are evaluated under various road conditions and driving inputs. They reduce the slip angle when braking and steering inputs are applied simultaneously, thereby increasing the controllability and stability of the vehicle on slippery roads.

Traction Control with Brake Pressure Estimation (브레이크 압력 추정을 적용한 구동력 제어)

  • Kim, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • Traction control suppresses the spinning of the driven wheel during drive away or acceleration on slippery road condition. In this study, the estimation method of brake pressure hardly measured is proposed. The estimation method of brake pressure and the brake pressure control with pulse width modulation(PWM) are verified a good performance through experiment. Also, the vehicle simulation on slippery road conditions is validated the applicability of brake pressure control for traction control. The simulation results have showed that the brake pressure can be used the control variable for traction control.

Development of a Control Method of Traction Control System Using Vehicle Model (차량 모델을 이용한 구동력 제어 시스템 (TCS)의 제어 방법 개발)

  • Song Jeonghoon;Kim Heungseob;Lee Dae Hee;Son Minhyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1203-1211
    • /
    • 2004
  • A traction control systems (TCSs) composed of either a wheel slip controller or a throttle valve controller or an integrated controller of both systems are proposed in this study. To validatethe dynamic characteristics of a vehicle and TCS, a full car model that can simulate the responses of both front wheel drive (2WD) and four wheel drive (4WD) vehicle is also developed. The wheel slip controller uses a sliding mode control scheme and the throttle valve is controlled by a PID controller. The results shows that tHe brake TCS and the engine TCS achieve rapid acceleration, and reduce slip angle on slippery road. When a vehicle is cornering and accelerating maneuver with the brake or engine TCS, understeer or oversteer occur, depending on the driving conditions. The integrated TCS prevents most of these problems and improves the stability and controllability of the vehicle.

Drainage concrete pavement work (배수성 콘크리트 포장 공법)

  • 황익현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.861-868
    • /
    • 1999
  • Drainage concrete pavement, unlike water permeable concrete pavement, is to preclude the pavement from overflowing with water, such as rain water, from infiltrating into earth by placing a border in the middle layer which makes water to flow through the surface of the border to the conduit. Drainage concrete pavement enhances car wheel resistance to slippery and wet road surface and imbibes noise caused by friction on the road. Also, by using pigment, it adds to the beauty of the environment. Drainage concrete pavement can be used for sidewalks, roadways, parking lots and expressways.

  • PDF