• Title/Summary/Keyword: Wheel control

Search Result 1,064, Processing Time 0.038 seconds

Lateral Dynamic Model of an All-Wheel Steered Articulated Vehicle for Guidance Control (전차륜조향 굴절차량의 안내제어를 위한 횡방향 동역학 모델)

  • Yun, Kyoung-Han;Kim, Young-Chol;Min, Kyung-Deuk;Byun, Yeun-Sub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1229-1238
    • /
    • 2011
  • This paper deals with the lateral dynamic model of an all-wheel steered articulated vehicle to design a guidance controller. Nonlinear dynamic model of articulated vehicle is developed by complementing the model about the BRT system of California PATH in U. S. A. and the Phileas system of the APTS in Netherlands. Linear lateral dynamic model has been derived from the nonlinear dynamic model under some assumptions associated with the driving conditions. To design a guidance controller, we derive a transfer function that is steering angle as input and lateral acceleration as output from the linear lateral dynamic model by applying the parameter of vehicle that is developed by Korea Railroad Research Institute. To validate the dynamic model, nonlinear dynamic model has been compared with a vehicle model that has been programmed in ADAMS, and linear dynamic model has been compared with a nonlinear dynamic model under sime assumptions.

Variable Wheel Position Mechanism with Full Mobility for a Car-Like Robot (자동차 로봇의 휠 배치 가변 구조 연구)

  • Kim, Sun-Wook;Jung, Hah-Min;Kim, Hong-Pil;Lee, Se-Han;Kim, Dong-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2251_2252
    • /
    • 2009
  • In this paper, an attempt has been made by incorporating variable wheel arrangement for a car-like robot. In this scheme, the car-like robot controls its body height and the length of forward and backward wheels while driving in omni-direction. Experimental results show that the proposed car-like robot with wheel arrangement variable structure presents effectiveness of several situations.(a. left and right turn, b. longitudinal and latitudinal parking, c. control of body height and the length of forward and backward wheels, d. passing over obstacles, e. adaptive cruise control.)

  • PDF

Realization of Differential Drive Wheeled Mobile Robot Dynamic Modeling Using Newton's Equilibrium law (뉴튼의 평행법칙을 이용한 차동구동 이동로봇의 동력학 모델링 구현)

  • Chung, Yong-Oug;Chung, Ku-Seob
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.349-358
    • /
    • 2010
  • We presents a dynamic modeling of 4-wheel 2-DOF. WMR. The classic dynamic model utilizes a greatly simplified wheel motion representation and using of a simplified dynamic model confronts with a problem for accurate position control of wheeled mobile robot. In this paper, we treats the dynamic model for describes relationship between the wheel actuator force/torque and WMR motion through the use of Newton's equilibrium laws. To calculate the WMR position in real time, we introduced the Dead-Reckoning algorithms and the simulation result show that the proposed dynamic model is useful. We can be easily extend the proposed WMR model to mobile robot of similar type and this type of methodology is useful to analyze, design and control any kinds of rolling robots.

Development of Experimental Mobile Robots for Robotics Engineering Education by Using LEGO MINDSTORM (이동로봇을 중심으로 LEGO MINDSTORM을 응용한 로봇공학 교육용 실습 로봇개발)

  • Park, June-Hyung;Jung, Seul
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.57-64
    • /
    • 2012
  • This paper introduces several mobile robots developed by using LEGO MIDSTORM for experimental studies of robotics engineering education. The first mobile robot is the line tracer robot that tracks a line, which is a prototype of wheel-driven mobile robots. Ultra violet sensors are used to detect and follow the line. The second robot system is a two-wheel balancing robot that is somewhat nonlinear and complex. For the robot to balance, a gyro sensor is used to detect a balancing angle and PD control is used. The last robot system is a combined system of a line tracer and a two-wheel balancing robot. Sensor filtering and control algorithms are tested through experimental studies.

Study on Maximum Adhesive Effort Estimation using Disturbance Observer (외란관측기를 이용한 최대 점착력 추정에 관한 연구)

  • Jun, K.Y.;Lee, S.H.;Oh, B.H.;Kang, S.U.;Lee, H.G.;Kim, Y.J.;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1120-1122
    • /
    • 2001
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

  • PDF

Complete Identification of Isotropic Configurations of a Caster Wheeled Mobile Robot with Nonredundant/Redundant Actuation

  • Kim, Sung-Bok;Moon, Byung-Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2356-2361
    • /
    • 2005
  • In this paper, we present a complete isotropy analysis of a caster wheeled omnidirectional mobile robot(COMR) with nonredundant/redundant actuation. The motivation of this work is that the omnidirectional mobility loses significance in motion control unless the isotropy characteristics is maintained well. First, with the characteristic length introduced, the kinematic model of a COMR is obtained based on the orthogonal decomposition of the wheel velocities. Second, a general form of the isotropy conditions of a COMR is given in terms of physically meaningful vector quantities which describe the wheel configurations. Third, for all possible nonredundant and redundant actuation sets, the algebraic expressions of the isotropy conditions are derived to completely identify the isotropic configurations of a COMR. Fourth, the number of the isotropic configurations and the characteristic length required for the isotropy are discussed.

  • PDF

Fault Detection System for Front-wheel Sleeving Passenger Cars

  • Kim, Hwan-Seong;You, Sam-Sang;Kim, Jin-Ho;Ha, Ju-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.45.3-45
    • /
    • 2001
  • This paper deal with a fault detection algorithm for front wheel passenger car systems by using robust $H{\infty}$ control theory. Firstly, we present a unified formulation of vehicle dynamics for front wheel car systems and transform this formulation into state space form. Also, by considering the cornering stiffness which depends on the tyre-road contact conditions, a multiplicative uncertainty for vehicle model is described. Next, the failures of sensor and actuator for vehicle system are defined in which the fault .lter is considered. From the nominal vehicle model, an augmented system includes the multiplicative uncertainty and the model of fault filter is proposed. Lastly by using $H{\infty}$ norm property the fault detect conditions are deefi.ned, and the actuator and sensor failures are detected and isolated by designing the robust $H{\infty}$ controller, respectively.

  • PDF

Kinematic Correction of n Differential Drive Mobile Robot and a Design for the Reference-Velocity Trajectory with Acceleration-Resolution Constraint on Motor Controllers (차동 구륜이동로봇의 기구학적 보정과 모터제어기의 가속도 해상도 제약을 고려한 기준속도궤적의 설계)

  • 문종우;김종수;박세승
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.498-505
    • /
    • 2002
  • Reducing odometer errors caused by kinematic imperfections in wheeled mobile robots is imestigated. Wheel diameters and wheelbase are corrected by using encoders without landmarks. A new velocity trajectory is proposed that compensates for an orientation error due to acceleration- resolution constraints on motor controllers. Based on this velocity trajectory, the wheel velocity of one out of two driven wheels may be changed by the traveled distance of the mobile robot. It is shown that a wheeled mobile robot can't move along a straight line exactly, even if kinematic correction are achieved perfectly, and this phenomenon is attributable to acceleration-resolution constraints on motor controllers. We experiment on a wheeled mobile robot with 2 d.o.f. are used in the experiment to verify the proposed scheme.

A Study on the Wheel Slip Protection for Korean High-Speed Railway Train (고속전철의 Wheel Slip Protection에 관한 연구)

  • Kim, M.S.;Hwang, D.H.;Kim, J.S.;Ryoo, H.J.;Jeon, J.W.;Kim, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.420-422
    • /
    • 1999
  • To improve traction effort performance and stability of Korean High-Speed Railway Train, a practical re-adhesion controller including a novel wheel slip protection control scheme is proposed. The presented method is verified by various train running simulations by induction motor vector control with PWM inverter.

  • PDF

Development in Equipment of Low Point Marking Machine Control System (Low Point 모니터링 장비의 개발)

  • Choi, Myung-Hwan;Kim, Won-Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.4
    • /
    • pp.205-209
    • /
    • 2010
  • Even the domestically small-and medium-sized companies progressed development in the monitoring equipment of inspecting run out in steel wheel aiming to supply and generalize through developing the monitoring equipment for securing quality technology and enhancing quality-test level. Run-Out value in vehicle wheel was measured with Computer & Servo system by using Low-Point marking machine control system, which is this development product. Low-Point value was operated and calculated. It marked by revolving wheel as much as the demanded measurement value based on 1ST harmony curve. Thus, the shipment of inferior product, which occurs in the measurement by the existing worker, could be blocked in advance. In the existing case, 60 sec. was required for inspecting 1 product. However, it came to bring about a rise in production volume through shortening inspection time to 8 seconds and improving workers' operating environment.

  • PDF